/*
(c) Copyright 1998-2001 - Tord Jansson
=======================================
This file is part of the BladeEnc MP3 Encoder, based on
ISO's reference code for MPEG Layer 3 compression, and might
contain smaller or larger sections that are directly taken
from ISO's reference code.
All changes to the ISO reference code herein are either
copyrighted by Tord Jansson ([email protected])
or sublicensed to Tord Jansson by a third party.
BladeEnc is free software; you can redistribute this file
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
------------ Changes ------------
2000-11-06 Andre Piotrowski
- speed up: complete new, much faster functions 'create_ana_filter()', 'windowFilterSubband()'
- 'WIND_SB_CHANGE_LEVEL' 3 requires a new 'enwindow[]' (see 'tables.c')
2000-11-22 ap
- bug fix: initWindowFilterSubband() -- Dividing the enwindow-entries is allowed to be done once only!
2000-12-11 ap
- speed up: WIND_SB_CHANGE_LEVEL 4
2001-01-12 ap
- bug fix: fixed some typo relevant in case of ORG_BUFFERS == 1
*/
#include "common.h"
#include "encoder.h"
/* ======================================================================================== */
/* rebuffer_audio */
/* ======================================================================================== */
#if ORG_BUFFERS
void rebuffer_audio
(
short buffer[2][1152],
short *insamp,
unsigned int samples_read,
int stereo
)
{
unsigned int j;
if (stereo == 2)
{
for (j = 0; j < samples_read/2; j++)
{
buffer[0][j] = insamp[2*j];
buffer[1][j] = insamp[2*j+1];
}
}
else
{
for (j = 0; j < samples_read; j++)
{
buffer[0][j] = insamp[j];
buffer[1][j] = 0;
}
}
for( ; j < 1152; j++)
{
buffer[0][j] = 0;
buffer[1][j] = 0;
}
return;
}
#else
#define FLUSH 1152
#define DELAY 768
void rebuffer_audio
(
const short *insamp,
FLOAT buffer[2][2048],
int *buffer_idx,
unsigned int samples_read,
int stereo
)
{
int idx, med, fin;
/* flush the last two read granules */
*buffer_idx = (*buffer_idx + FLUSH) & 2047;
idx = (*buffer_idx + DELAY) & 2047;
fin = (idx + FLUSH) & 2047;
if (stereo == 2)
{
med = (idx + samples_read/2) & 2047;
if (idx >= med)
{
while (idx < 2048)
{
buffer[0][idx] = *insamp++;
buffer[1][idx] = *insamp++;
idx++;
}
idx = 0;
}
while (idx < med)
{
buffer[0][idx] = *insamp++;
buffer[1][idx] = *insamp++;
idx++;
}
}
else
{
med = (idx + samples_read) & 2047;
if (idx >= med)
{
while (idx < 2048)
{
buffer[0][idx] = *insamp++;
buffer[1][idx] = 0;
idx++;
}
idx = 0;
}
while (idx < med)
{
buffer[0][idx] = *insamp++;
buffer[1][idx] = 0;
idx++;
}
}
if (idx != fin)
{
if (idx > fin)
{
while (idx < 2048)
{
buffer[0][idx] = 0;
buffer[1][idx] = 0;
idx++;
}
idx = 0;
}
while (idx < fin)
{
buffer[0][idx] = 0;
buffer[1][idx] = 0;
idx++;
}
}
}
#endif
#if ORG_BUFFERS
#define WIND_SB_CHANGE_LEVEL 3
#else
#define WIND_SB_CHANGE_LEVEL 4
#endif
#if WIND_SB_CHANGE_LEVEL==4
typedef double filter_matrix[SBLIMIT/4][32];
static filter_matrix m;
/* ======================================================================================== */
/* create_ana_filter */
/* ======================================================================================== */
/*
Calculates the analysis filterbank coefficients and rounds to the 9th decimal place
accuracy of the filterbank tables in the ISO document.
The coefficients are stored in #new_filter#
Originally was computed
filter[i][j] := cos (PI64 * ((2*i+1) * (16-j)))
for i = 0..SBLIMIT-1 and j = 0..63 .
But for j = 0..15 is 16-j = -(16-(32-j)) which implies
(1) filter[i][j] = filter[i][32-j] .
(We know that filter[i][16] = cos(0) = 1 , but that is not so interesting.)
Furthermore, for j = 33..48 we get
filter[i][96-j]
= cos (PI64 * (2*i+1) * (j-80))
= cos (PI * (2*i+1) + PI64 * (2*i+1) * (16-j))
(2) = cos (PI * (2*i+1)) * cos (PI64 * (2*i+1) * (16-j)) // sin (PI * (2*i+1)) = 0
= -cos (PI64 * (2*i+1) * (16-j))
= -filter[i][j] ,
especially is filter[i][48] = 0 .
On the other hand there is
filter[31-i][j]
= cos (PI64 * (2*(31-i)+1) * (16-j))
= cos (PI64 * (64-(2*i+1)) * (16-j))
= cos (PI * (16-j) - PI64 * (2*i+1) * (16-j))
= cos (PI * (16-j)) * cos (PI64 * (2*i+1) * (16-j)) // sin (PI * (16-j)) = 0
= (-1)^^j * cos (PI64 * (2*i+1) * (16-j))
= (-1)^^j * filter[i][j] .
There is a third somewhat more complication "symmetry":
filter[15-i][j]
= cos (PI64 * (2*(15-i)+1) * (16-j))
= cos (PI64 * (32-(2*i+1)) * (16-j))
= cos (PI/2 * (16-j) - PI64 * (2*i+1) * (16-j))
= cos (PI/2 * (16-j)) * cos (PI64 * (2*i+1) * (16-j)) + sin (PI/2 * (16-j)) * sin (PI64 * (2*i+1) * (16-j))
= cos (PI/2 * (16-j)) * cos (PI64 * (2*i+1) * (16-j)) + sin (PI/2 * (16-j)) * cos (PI64 * (2*i+1) * (-1)^^i * (16-(j+32)))
= (-1)^^( j /2 ) * filter[i][j ] for even j
= (-1)^^((j+1)/2 + i) * filter[i][j+32] for odd j with j < 32
= (-1)^^((j-1)/2 + i) * filter[i][j-32] for odd j with j >= 32
For these reasons we create a filter of the eighth size only and set
new_filter[i][j] := filter[i][j] for i = 0..SBLIMIT/4-1 and j = 0..16
new_filter[i][j] := filter[i][j+16] for i = 0..SBLIMIT/4-1 and j = 17..31
*/
static void create_ana_filter (double new_filter[SBLIMIT/4][32])
{
register int i, j;
double t;
for (i = 0; i < SBLIMIT/4; i++)
{
for (j = 0; j <= 16; j++)
{
t = 1e9 * cos (PI64 * (double) ((2*i+1) * (16-j)));
if (t >= 0)
modf (t + 0.5, &t);
else
modf (t - 0.5, &t);
new_filter[i][j] = t * 1e-9;
}
for (j = 17; j < 32; j++)
{
t = 1e9 * cos (PI64 * (double) ((2*i+1) * j)); /* (16-(j+16)) */
if (t >= 0)
modf (t + 0.5, &t);
else
modf (t - 0.5, &t);
new_filter[i][j] = t * 1e-9;
}
}
}
/* ======================================================================================== */
/* windowFilterSubband */
/* ======================================================================================== */
/*
Calculates the analysis filter bank coefficients
The windowed samples #z# is filtered by the digital filter matrix #m# to produce the
subband samples #s#. This done by first selectively picking out values from the windowed
samples, and then multiplying them by the filter matrix, producing 32 subband samples.
*/
void windowFilterSubband
(
const FLOAT *buffer,
int buffer_idx,
double s[SBLIMIT]
)
{
int i, k;
double t, u, v, w;
double z[32];
double *p;
double *pEnw;
pEnw = enwindow;
for (k = 0; k <= 16; k++)
{
t = buffer[(buffer_idx+511) & 2047] * *pEnw++;
t += buffer[(buffer_idx+447) & 2047] * *pEnw++;
t += buffer[(buffer_idx+383) & 2047] * *pEnw++;
t += buffer[(buffer_idx+319) & 2047] * *pEnw++;
t += buffer[(buffer_idx+255) & 2047] * *pEnw++;
t += buffer[(buffer_idx+191) & 2047] * *pEnw++;
t += buffer[(buffer_idx+127) & 2047] * *pEnw++;
t += buffer[(buffer_idx+ 63) & 2047] * *pEnw++;
z[k] = t;
buffer_idx--;
}
for (k = 15; k >= 0; k--)
{
t = buffer[(buffer_idx+511) & 2047] * *pEnw++;
t += buffer[(buffer_idx+447) & 2047] * *pEnw++;
t += buffer[(buffer_idx+383) & 2047] * *pEnw++;
t += buffer[(buffer_idx+319) & 2047] * *pEnw++;
t += buffer[(buffer_idx+255) & 2047] * *pEnw++;
t += buffer[(buffer_idx+191) & 2047] * *pEnw++;
t += buffer[(buffer_idx+127) & 2047] * *pEnw++;
t += buffer[(buffer_idx+ 63) & 2047] * *pEnw++;
z[k] += t;
buffer_idx--;
}
for (k = 17; k < 32; k++)
{
t = buffer[(buffer_idx+511) & 2047] * *pEnw++;
t += buffer[(buffer_idx+447) & 2047] * *pEnw++;
t += buffer[(buffer_idx+383) & 2047] * *pEnw++;
t += buffer[(buffer_idx+319) & 2047] * *pEnw++;
t += buffer[(buffer_idx+255) & 2047] * *pEnw++;
t += buffer[(buffer_idx+191) & 2047] * *pEnw++;
t += buffer[(buffer_idx+127) & 2047] * *pEnw++;
t += buffer[(buffer_idx+ 63) & 2047] * *pEnw++;
z[k] = t;
buffer_idx--;
}
/* normally y[48] was computed like the other entries, */
/* but this entry is not needed because m[i][48] = 0. */
buffer_idx--; /* But we have to increase the pointers. */
pEnw += 8;
for (k = 31; k > 16; k--)
{
t = buffer[(buffer_idx+511) & 2047] * *pEnw++;
t += buffer[(buffer_idx+447) & 2047] * *pEnw++;
t += buffer[(buffer_idx+383) & 2047] * *pEnw++;
t += buffer[(buffer_idx+319) & 2047] * *pEnw++;
t += buffer[(buffer_idx+255) & 2047] * *pEnw++;
t += buffer[(buffer_idx+191) & 2047] * *pEnw++;
t += buffer[(buffer_idx+127) & 2047] * *pEnw++;
t += buffer[(buffer_idx+ 63) & 2047] * *pEnw++;
z[k] -= t;
buffer_idx--;
}
for (i = 0; i < SBLIMIT/4; i++)
{
p = m[i];
t = u = v = w = 0.0;
for (k = 0; k < 16; k += 4)
{
t += p[k ] * z[k ];
v += p[k+ 2] * z[k+2];
u += p[k+ 1] * z[k+1] + p[k+ 3] * z[k+3];
w -= p[k+17] * z[k+1] - p[k+19] * z[k+3];
}
for ( ; k < 32; k += 4)
{
t += p[k ] * z[k ];
v += p[k+ 2] * z[k+2];
u += p[k+ 1] * z[k+1] + p[k+ 3] * z[k+3];
w += p[k-15] * z[k+1] - p[k-13] * z[k+3];
}
s[ i] = (t + v) + u;
s[SBLIMIT-1-i] = (t + v) - u;
if (i & 1)
{
s[SBLIMIT/2-1-i] = (t - v) - w;
s[SBLIMIT/2 +i] = (t - v) + w;
}
else
{
s[SBLIMIT/2-1-i] = (t - v) + w;
s[SBLIMIT/2 +i] = (t - v) - w;
}
}
}
#elif WIND_SB_CHANGE_LEVEL==3
#define imax (SBLIMIT/4)
typedef double filter_matrix[imax][32];
static int half[2];
static int off[2];
static double x[2][512];
static filter_matrix m;
/* ======================================================================================== */
/* create_ana_filter */
/* ======================================================================================== */
/*
Calculates the analysis filterbank coefficients and rounds to the 9th decimal place
accuracy of the filterbank tables in the ISO document.
The coefficients are stored in #new_filter#
Originally was computed
filter[i][j] := cos (PI64 * ((2*i+1) * (16-j)))
for i = 0..SBLIMIT-1 and j = 0..63 .
But for j = 0..15 is 16-j = -(16-(32-j)) which implies
(1) filter[i][j] = filter[i][32-j] .
(We know that filter[i][16] = cos(0) = 1 , but that is not so interesting.)
Furthermore, for j = 33..48 we get
filter[i][96-j]
= cos (PI64 * (2*i+1) * (j-80))
= cos (PI * (2*i+1) + PI64 * (2*i+1) * (16-j))
(2) = cos (PI * (2*i+1)) * cos (PI64 * (2*i+1) * (16-j)) // sin (PI * (2*i+1)) = 0
= -cos (PI64 * (2*i+1) * (16-j))
= -filter[i][j] ,
especially is filter[i][48] = 0 .
On the other hand there is
filter[31-i][j]
= cos (PI64 * (2*(31-i)+1) * (16-j))
= cos (PI64 * (64-(2*i+1)) * (16-j))
= cos (PI * (16-j) - PI64 * (2*i+1) * (16-j))
= cos (PI * (16-j)) * cos (PI64 * (2*i+1) * (16-j)) // sin (PI * (16-j)) = 0
= (-1)^^j * cos (PI64 * (2*i+1) * (16-j))
= (-1)^^j * filter[i][j] .
There is a third somewhat more complication "symmetry":
filter[15-i][j]
= cos (PI64 * (2*(15-i)+1) * (16-j))
= cos (PI64 * (32-(2*i+1)) * (16-j))
= cos (PI/2 * (16-j) - PI64 * (2*i+1) * (16-j))
= cos (PI/2 * (16-j)) * cos (PI64 * (2*i+1) * (16-j)) + sin (PI/2 * (16-j)) * sin (PI64 * (2*i+1) * (16-j))
= cos (PI/2 * (16-j)) * cos (PI64 * (2*i+1) * (16-j)) + sin (PI/2 * (16-j)) * cos (PI64 * (2*i+1) * (-1)^^i * (16-(j+32)))
= (-1)^^( j /2 ) * filter[i][j ] for even j
= (-1)^^((j+1)/2 + i) * filter[i][j+32] for odd j with j < 32
= (-1)^^((j-1)/2 + i) * filter[i][j-32] for odd j with j >= 32
For these reasons we create a filter of the eighth size only and set
new_filter[i][j] := filter[i][j] for i = 0..SBLIMIT/4-1 and j = 0..16
new_filter[i][j] := filter[i][j+16] for i = 0..SBLIMIT/4-1 and j = 17..31
*/
static void create_ana_filter (double new_filter[imax][32])
{
register int i, j;
double t;
for (i = 0; i < imax; i++)
{
for (j = 0; j <= 16; j++)
{
t = 1e9 * cos (PI64 * (double) ((2*i+1) * (16-j)));
if (t >= 0)
modf (t + 0.5, &t);
else
modf (t - 0.5, &t);
new_filter[i][j] = t * 1e-9;
}
for (j = 17; j < 32; j++)
{
t = 1e9 * cos (PI64 * (double) ((2*i+1) * j)); /* (16-(j+16)) */
if (t >= 0)
modf (t + 0.5, &t);
else
modf (t - 0.5, &t);
new_filter[i][j] = t * 1e-9;
}
}
}
/* ======================================================================================== */
/* windowFilterSubband */
/* ======================================================================================== */
/*
Calculates the analysis filter bank coefficients
The windowed samples #z# is filtered by the digital filter matrix #m# to produce the
subband samples #s#. This done by first selectively picking out values from the windowed
samples, and then multiplying them by the filter matrix, producing 32 subband samples.
*/
void windowFilterSubband
(
short *pBuffer,
int ch,
double s[SBLIMIT]
)
{
int i, k;
int a;
double t, u, v, w;
double z[32];
double *pm;
double *px;
double *pEnw;
px = x[ch] + half[ch];
a = off[ch];
/* replace 32 oldest samples with 32 new samples */
for (i = 0; i < 32; i++)
px[a + (31-i)*8] = (double) pBuffer[i]/*/SCALE*/;
pEnw = enwindow;
for (k = 0; k <= 16; k++)
{
t = px[(a+0) & 7] * *pEnw++;
t += px[(a+1) & 7] * *pEnw++;
t += px[(a+2) & 7] * *pEnw++;
t += px[(a+3) & 7] * *pEnw++;
t += px[(a+4) & 7] * *pEnw++;
t += px[(a+5) & 7] * *pEnw++;
t += px[(a+6) & 7] * *pEnw++;
t += px[(a+7) & 7] * *pEnw++;
z[k] = t;
px += 8;
}
for (k = 15; k > 0; k--)
{
t = px[(a+0) & 7] * *pEnw++;
t += px[(a+1) & 7] * *pEnw++;
t += px[(a+2) & 7] * *pEnw++;
t += px[(a+3) & 7] * *pEnw++;
t += px[(a+4) & 7] * *pEnw++;
t += px[(a+5) & 7] * *pEnw++;
t += px[(a+6) & 7] * *pEnw++;
t += px[(a+7) & 7] * *pEnw++;
z[k] += t;
px += 8;
}
half[ch] ^= 256; /* toggling 0 or 256 */
if (half[ch])
{
off[ch] = (a + 7) & 7;
}
else
{
px = x[ch];
a = (a + 1) & 7;
}
/* k = 0; */
{
t = px[(a+0) & 7] * *pEnw++;
t += px[(a+1) & 7] * *pEnw++;
t += px[(a+2) & 7] * *pEnw++;
t += px[(a+3) & 7] * *pEnw++;
t += px[(a+4) & 7] * *pEnw++;
t += px[(a+5) & 7] * *pEnw++;
t += px[(a+6) & 7] * *pEnw++;
t += px[(a+7) & 7] * *pEnw++;
z[k] += t;
px += 8;
}
for (k = 17; k < 32; k++)
{
t = px[(a+0) & 7] * *pEnw++;
t += px[(a+1) & 7] * *pEnw++;
t += px[(a+2) & 7] * *pEnw++;
t += px[(a+3) & 7] * *pEnw++;
t += px[(a+4) & 7] * *pEnw++;
t += px[(a+5) & 7] * *pEnw++;
t += px[(a+6) & 7] * *pEnw++;
t += px[(a+7) & 7] * *pEnw++;
z[k] = t;
px += 8;
}
/* normally y[48] was computed like the other entries, */
/* but this entry is not needed because m[i][48] = 0. */
px += 8; /* But we have to increase the pointers. */
pEnw += 8;
for (k = 31; k > 16; k--)
{
t = px[(a+0) & 7] * *pEnw++;
t += px[(a+1) & 7] * *pEnw++;
t += px[(a+2) & 7] * *pEnw++;
t += px[(a+3) & 7] * *pEnw++;
t += px[(a+4) & 7] * *pEnw++;
t += px[(a+5) & 7] * *pEnw++;
t += px[(a+6) & 7] * *pEnw++;
t += px[(a+7) & 7] * *pEnw++;
z[k] -= t;
px += 8;
}
for (i = 0; i < imax; i++)
{
pm = m[i];
t = u = v = w = 0.0;
for (k = 0; k < 16; k += 4)
{
t += pm[k ] * z[k ];
v += pm[k+ 2] * z[k+2];
u += pm[k+ 1] * z[k+1] + pm[k+ 3] * z[k+3];
w -= pm[k+17] * z[k+1] - pm[k+19] * z[k+3];
}
for ( ; k < 32; k += 4)
{
t += pm[k ] * z[k ];
v += pm[k+ 2] * z[k+2];
u += pm[k+ 1] * z[k+1] + pm[k+ 3] * z[k+3];
w += pm[k-15] * z[k+1] - pm[k-13] * z[k+3];
}
s[ i] = (t + v) + u;
s[SBLIMIT-1-i] = (t + v) - u;
if (i & 1)
{
s[SBLIMIT/2-1-i] = (t - v) - w;
s[SBLIMIT/2 +i] = (t - v) + w;
}
else
{
s[SBLIMIT/2-1-i] = (t - v) + w;
s[SBLIMIT/2 +i] = (t - v) - w;
}
}
}
#elif WIND_SB_CHANGE_LEVEL==2
typedef double filter_matrix[SBLIMIT/2][32];
static int off[2];
static int half[2];
static double x[2][512];
static filter_matrix m;
/* ======================================================================================== */
/* create_ana_filter */
/* ======================================================================================== */
/*
Calculates the analysis filterbank coefficients and rounds to the 9th decimal place
accuracy of the filterbank tables in the ISO document.
The coefficients are stored in #new_filter#
Originally was computed
filter[i][j] := cos (PI64 * ((2*i+1) * (16-j)))
for i = 0..SBLIMIT-1 and j = 0..63 .
But for j = 0..15 is 16-j = -(16-(32-j)) which implies
(1) filter[i][j] = filter[i][32-j] .
(We know that filter[i][16] = cos(0) = 1 , but that is not so interesting.)
Furthermore, for j = 33..48 we get
filter[i][96-j]
= cos (PI64 * (2*i+1) * (j-80))
= cos (PI * (2*i+1) + PI64 * (2*i+1) * (16-j))
(2) = cos (PI * (2*i+1)) * cos (PI64 * (2*i+1) * (16-j)) // sin (PI * (2*i+1)) = 0
= -cos (PI64 * (2*i+1) * (16-j))
= -filter[i][j] ,
especially is filter[i][48] = 0 .
On the other hand there is
filter[31-i][j]
= cos (PI64 * (2*(31-i)+1) * (16-j))
= cos (PI64 * (64-(2*i+1)) * (16-j))
= cos (PI * (16-j) - PI64 * (2*i+1) * (16-j))
= cos (PI * (16-j)) * cos (PI64 * (2*i+1) * (16-j)) // sin (PI * (16-j)) = 0
= (-1)^^j * cos (PI64 * (2*i+1) * (16-j))
= (-1)^^j * filter[i][j] .
For these reasons we create a filter of the quarter size only and set
new_filter[i][j] := filter[i][j] for i = 0..SBLIMIT/2-1 and j = 0..16
new_filter[i][j] := filter[i][j+16] for i = 0..SBLIMIT/2-1 and j = 17..31
*/
static void create_ana_filter (double new_filter[SBLIMIT/2][32])
{
register int i, j;
double t;
for (i = 0; i < SBLIMIT/2; i++)
{
for (j = 0; j < =16; j++)
{
t = 1e9 * cos (PI64 * (double) ((2*i+1) * (16-j)));
if (t >= 0)
modf (t + 0.5, &t);
else
modf (t - 0.5, &t);
new_filter[i][j] = t * 1e-9;
}
for (j = 17; j < 32; j++)
{
t = 1e9 * cos (PI64 * (double) ((2*i+1) * j)); /* (16-(j+16)) */
if (t >= 0)
modf (t + 0.5, &t);
else
modf (t - 0.5, &t);
new_filter[i][j] = t * 1e-9;
}
}
}
/* ======================================================================================== */
/* windowFilterSubband */
/* ======================================================================================== */
/*
Calculates the analysis filter bank coefficients
The windowed samples #z# is filtered by the digital filter matrix #m# to produce the
subband samples #s#. This done by first selectively picking out values from the windowed
samples, and then multiplying them by the filter matrix, producing 32 subband samples.
*/
void windowFilterSubband
(
short *pBuffer,
int ch,
double s[SBLIMIT]
)
{
int i, k;
int a;
double t, u;
double z[32]; /* y[64]; */
double *pm;
double *px;
double *pEnw;
px = x[ch] + half[ch];
a = off[ch];
/* replace 32 oldest samples with 32 new samples */
for (i = 0; i < 32; i++)
px[a + (31-i)*8] = (double) pBuffer[i] /*/SCALE*/;
/*
for k = 0..15 we compute
z[k] := y[k] + y[32-k]
and we set
z[16| := y[16] .
*/
pEnw = enwindow;
for (k = 0; k <= 16; k++) /* for (j = 0; j < =16; j++) */
{
t = px[(a+0) & 7] * pEnw[64*0];
t += px[(a+1) & 7] * pEnw[64*1];
t += px[(a+2) & 7] * pEnw[64*2];
t += px[(a+3) & 7] * pEnw[64*3];
t += px[(a+4) & 7] * pEnw[64*4];
t += px[(a+5) & 7] * pEnw[64*5];
t += px[(a+6) & 7] * pEnw[64*6];
t += px[(a+7) & 7] * pEnw[64*7];
z[k] = t; /* y[j] = t; */
px += 8;
pEnw++;
}
for (k = 15; k > 0; k--) /* for (j = 17; j < 32; j++) */
{
t = px[(a+0) & 7] * pEnw[64*0];
t += px[(a+1) & 7] * pEnw[64*1];
t += px[(a+2) & 7] * pEnw[64*2];
t += px[(a+3) & 7] * pEnw[64*3];
t += px[(a+4) & 7] * pEnw[64*4];
t += px[(a+5) & 7] * pEnw[64*5];
t += px[(a+6) & 7] * pEnw[64*6];
t += px[(a+7) & 7] * pEnw[64*7];
z[k] += t; /* y[j] = t; */
px += 8;
pEnw++;
}
half[ch] ^= 256; /* toggling 0 or 256 */
if (half[ch])
{
off[ch] = (a + 7) & 7; /*offset is modulo (HAN_SIZE-1)*/
}
else
{
px = x[ch];
a = (a + 1) & 7;
}
/* k = 0; not needed, actual value of k is 0 */ /* j = 32; */
{
t = px[(a+0) & 7] * pEnw[64*0];
t += px[(a+1) & 7] * pEnw[64*1];
t += px[(a+2) & 7] * pEnw[64*2];
t += px[(a+3) & 7] * pEnw[64*3];
t += px[(a+4) & 7] * pEnw[64*4];
t += px[(a+5) & 7] * pEnw[64*5];
t += px[(a+6) & 7] * pEnw[64*6];
t += px[(a+7) & 7] * pEnw[64*7];
z[k] += t; /* y[j] = t; */
px += 8;
pEnw++;
}
/*
for k = 17..31 we compute
z[k] := y[k+16] - y[80-k]
*/
for (k = 17; k < 32; k++) /* for (j = 33; j < 47; j++) */
{
t = px[(a+0) & 7] * pEnw[64*0];
t += px[(a+1) & 7] * pEnw[64*1];
t += px[(a+2) & 7] * pEnw[64*2];
t += px[(a+3) & 7] * pEnw[64*3];
t += px[(a+4) & 7] * pEnw[64*4];
t += px[(a+5) & 7] * pEnw[64*5];
t += px[(a+6) & 7] * pEnw[64*6];
t += px[(a+7) & 7] * pEnw[64*7];
z[k] = t; /* y[j] = t; */
px += 8;
pEnw++;
}
/* normally y[48] was computed like the other entries, */
/* but this entry is not needed because m[i][48] = 0. */
px += 8; /* But we have to increase the pointers. */
pEnw++;
for (k = 31; k > 16; k--) /* for (j = 49; j < 64; j++) */
{
t = px[(a+0) & 7] * pEnw[64*0];
t += px[(a+1) & 7] * pEnw[64*1];
t += px[(a+2) & 7] * pEnw[64*2];
t += px[(a+3) & 7] * pEnw[64*3];
t += px[(a+4) & 7] * pEnw[64*4];
t += px[(a+5) & 7] * pEnw[64*5];
t += px[(a+6) & 7] * pEnw[64*6];
t += px[(a+7) & 7] * pEnw[64*7];
z[k] -= t; /* y[j] = t; */
px += 8;
pEnw++;
}
pm = m[0]; /* pm = m[0]; */
for (i = 0; i < SBLIMIT/2; i++) /* for (i = 0; i < SBLIMIT; i++) */
{
t = u = 0.0; /* t = 0.0; */
for (k = 0; k < 32; ) /* for (j = 0; j < 64; j++) */
{
t += *pm++ * z[k++]; /* t += *pm++ * y[j]; */
u += *pm++ * z[k++];
}
s[ i] = t + u; /* s[i] = t; */
s[SBLIMIT-1-i] = t - u;
}
}
#elif WIND_SB_CHANGE_LEVEL==1
typedef double filter_matrix[SBLIMIT][64];
static int off[2];
static int half[2];
static double x[2][512];
static filter_matrix m;
/* ======================================================================================== */
/* create_ana_filter */
/* ======================================================================================== */
/*
Calculates the analysis filterbank coefficients and rounds to the 9th decimal place
accuracy of the filterbank tables in the ISO document.
The coefficients are stored in #filter#
*/
static void create_ana_filter (filter_matrix filter)
{
register int i, j;
double t;
for (i = 0; i < SBLIMIT; i++)
{
for (j = 0; j < 64; j++)
{
t = 1e9 * cos (PI64 * (double) ((2*i+1) * (16-j)));
if (t >= 0)
modf (t + 0.5, &t);
else
modf (t - 0.5, &t);
filter[i][j] = t * 1e-9;
}
}
}
/* ======================================================================================== */
/* windowFilterSubband */
/* ======================================================================================== */
/*
Calculates the analysis filter bank coefficients
The windowed samples #y# is filtered by the digital filter matrix #m# to produce the
subband samples #s#. This done by first selectively picking out values from the windowed
samples, and then multiplying them by the filter matrix, producing 32 subband samples.
*/
void windowFilterSubband
(
short *pBuffer,
int ch,
double s[SBLIMIT]
)
{
int i, j;
int a;
double t;
double y[64];
double *pm;
double *px;
double *pEnw;
px = x[ch] + half[ch];
a = off[ch];
/* replace 32 oldest samples with 32 new samples */
for (i = 0; i < 32; i++)
px[a + (31-i)*8] = (double) pBuffer[i] /*/SCALE*/;
pEnw = enwindow;
for (j = 0; j < 32; j++)
{
t = px[(a+0) & 7] * pEnw[64*0];
t += px[(a+1) & 7] * pEnw[64*1];
t += px[(a+2) & 7] * pEnw[64*2];
t += px[(a+3) & 7] * pEnw[64*3];
t += px[(a+4) & 7] * pEnw[64*4];
t += px[(a+5) & 7] * pEnw[64*5];
t += px[(a+6) & 7] * pEnw[64*6];
t += px[(a+7) & 7] * pEnw[64*7];
y[j] = t;
px += 8;
pEnw++;
}
half[ch] ^= 256; /* toggling 0 or 256 */
if (half[ch])
{
off[ch] = (a + 7) & 7; /*offset is modulo (HAN_SIZE-1)*/
}
else
{
px = x[ch];
a = (a + 1) & 7;
}
for (j = 32; j < 64; j++)
{
t = px[(a+0) & 7] * pEnw[64*0];
t += px[(a+1) & 7] * pEnw[64*1];
t += px[(a+2) & 7] * pEnw[64*2];
t += px[(a+3) & 7] * pEnw[64*3];
t += px[(a+4) & 7] * pEnw[64*4];
t += px[(a+5) & 7] * pEnw[64*5];
t += px[(a+6) & 7] * pEnw[64*6];
t += px[(a+7) & 7] * pEnw[64*7];
y[j] = t;
px += 8;
pEnw++;
}
pm = m[0];
for (i = 0; i < SBLIMIT; i++)
{
t = 0.0;
for (j = 0; j < 64; j++)
t += *pm++ * y[j];
s[i] = t;
}
}
#endif
/* ======================================================================================== */
/* initWindowFilterSubband */
/* ======================================================================================== */
void initWindowFilterSubband (void)
{
static int initialized = 0;
int i;
if (!initialized)
{
create_ana_filter (m);
for (i = 0; i < 512; i++)
enwindow[i] /= SCALE;
initialized = 1;
}
#if ORG_BUFFERS
half[0] = half[1] = 0;
off[0] = off[1] = 0;
memset (x, 0, sizeof(x));
#endif
}
|