/* replaygain_synthesis - Routines for applying ReplayGain to a signal
* Copyright (C) 2002,2003,2004 Josh Coalson
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
* This is an aggregation of pieces of code from John Edwards' WaveGain
* program. Mostly cosmetic changes were made; otherwise, the dithering
* code is almost untouched and the gain processing was converted from
* processing a whole file to processing chunks of samples.
*
* The original copyright notices for WaveGain's dither.c and wavegain.c
* appear below:
*/
/*
* (c) 2002 John Edwards
* mostly lifted from work by Frank Klemm
* random functions for dithering.
*/
/*
* Copyright (C) 2002 John Edwards
* Additional code by Magnus Holmgren and Gian-Carlo Pascutto
*/
#include <string.h> /* for memset() */
#include <math.h>
#include "private/fast_float_math_hack.h"
#include "replaygain_synthesis.h"
#include "FLAC/assert.h"
#if defined _MSC_VER
#define FLAC__INLINE __inline
#else
#define FLAC__INLINE
#endif
/* adjust for compilers that can't understand using LLU suffix for uint64_t literals */
#ifdef _MSC_VER
#define FLAC__I64L(x) x
#else
#define FLAC__I64L(x) x##LL
#endif
/*
* the following is based on parts of dither.c
*/
/*
* This is a simple random number generator with good quality for audio purposes.
* It consists of two polycounters with opposite rotation direction and different
* periods. The periods are coprime, so the total period is the product of both.
*
* -------------------------------------------------------------------------------------------------
* +-> |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0|
* | -------------------------------------------------------------------------------------------------
* | | | | | | |
* | +--+--+--+-XOR-+--------+
* | |
* +--------------------------------------------------------------------------------------+
*
* -------------------------------------------------------------------------------------------------
* |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0| <-+
* ------------------------------------------------------------------------------------------------- |
* | | | | |
* +--+----XOR----+--+ |
* | |
* +----------------------------------------------------------------------------------------+
*
*
* The first has an period of 3*5*17*257*65537, the second of 7*47*73*178481,
* which gives a period of 18.410.713.077.675.721.215. The result is the
* XORed values of both generators.
*/
static unsigned int random_int_()
{
static const unsigned char parity_[256] = {
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0
};
static unsigned int r1_ = 1;
static unsigned int r2_ = 1;
unsigned int t1, t2, t3, t4;
/* Parity calculation is done via table lookup, this is also available
* on CPUs without parity, can be implemented in C and avoid unpredictable
* jumps and slow rotate through the carry flag operations.
*/
t3 = t1 = r1_; t4 = t2 = r2_;
t1 &= 0xF5; t2 >>= 25;
t1 = parity_[t1]; t2 &= 0x63;
t1 <<= 31; t2 = parity_[t2];
return (r1_ = (t3 >> 1) | t1 ) ^ (r2_ = (t4 + t4) | t2 );
}
/* gives a equal distributed random number */
/* between -2^31*mult and +2^31*mult */
static double random_equi_(double mult)
{
return mult * (int) random_int_();
}
/* gives a triangular distributed random number */
/* between -2^32*mult and +2^32*mult */
static double random_triangular_(double mult)
{
return mult * ( (double) (int) random_int_() + (double) (int) random_int_() );
}
static const float F44_0 [16 + 32] = {
(float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,
(float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,
(float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,
(float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,
(float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,
(float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0
};
static const float F44_1 [16 + 32] = { /* SNR(w) = 4.843163 dB, SNR = -3.192134 dB */
(float) 0.85018292704024355931, (float) 0.29089597350995344721, (float)-0.05021866022121039450, (float)-0.23545456294599161833,
(float)-0.58362726442227032096, (float)-0.67038978965193036429, (float)-0.38566861572833459221, (float)-0.15218663390367969967,
(float)-0.02577543084864530676, (float) 0.14119295297688728127, (float) 0.22398848581628781612, (float) 0.15401727203382084116,
(float) 0.05216161232906000929, (float)-0.00282237820999675451, (float)-0.03042794608323867363, (float)-0.03109780942998826024,
(float) 0.85018292704024355931, (float) 0.29089597350995344721, (float)-0.05021866022121039450, (float)-0.23545456294599161833,
(float)-0.58362726442227032096, (float)-0.67038978965193036429, (float)-0.38566861572833459221, (float)-0.15218663390367969967,
(float)-0.02577543084864530676, (float) 0.14119295297688728127, (float) 0.22398848581628781612, (float) 0.15401727203382084116,
(float) 0.05216161232906000929, (float)-0.00282237820999675451, (float)-0.03042794608323867363, (float)-0.03109780942998826024,
(float) 0.85018292704024355931, (float) 0.29089597350995344721, (float)-0.05021866022121039450, (float)-0.23545456294599161833,
(float)-0.58362726442227032096, (float)-0.67038978965193036429, (float)-0.38566861572833459221, (float)-0.15218663390367969967,
(float)-0.02577543084864530676, (float) 0.14119295297688728127, (float) 0.22398848581628781612, (float) 0.15401727203382084116,
(float) 0.05216161232906000929, (float)-0.00282237820999675451, (float)-0.03042794608323867363, (float)-0.03109780942998826024,
};
static const float F44_2 [16 + 32] = { /* SNR(w) = 10.060213 dB, SNR = -12.766730 dB */
(float) 1.78827593892108555290, (float) 0.95508210637394326553, (float)-0.18447626783899924429, (float)-0.44198126506275016437,
(float)-0.88404052492547413497, (float)-1.42218907262407452967, (float)-1.02037566838362314995, (float)-0.34861755756425577264,
(float)-0.11490230170431934434, (float) 0.12498899339968611803, (float) 0.38065885268563131927, (float) 0.31883491321310506562,
(float) 0.10486838686563442765, (float)-0.03105361685110374845, (float)-0.06450524884075370758, (float)-0.02939198261121969816,
(float) 1.78827593892108555290, (float) 0.95508210637394326553, (float)-0.18447626783899924429, (float)-0.44198126506275016437,
(float)-0.88404052492547413497, (float)-1.42218907262407452967, (float)-1.02037566838362314995, (float)-0.34861755756425577264,
(float)-0.11490230170431934434, (float) 0.12498899339968611803, (float) 0.38065885268563131927, (float) 0.31883491321310506562,
(float) 0.10486838686563442765, (float)-0.03105361685110374845, (float)-0.06450524884075370758, (float)-0.02939198261121969816,
(float) 1.78827593892108555290, (float) 0.95508210637394326553, (float)-0.18447626783899924429, (float)-0.44198126506275016437,
(float)-0.88404052492547413497, (float)-1.42218907262407452967, (float)-1.02037566838362314995, (float)-0.34861755756425577264,
(float)-0.11490230170431934434, (float) 0.12498899339968611803, (float) 0.38065885268563131927, (float) 0.31883491321310506562,
(float) 0.10486838686563442765, (float)-0.03105361685110374845, (float)-0.06450524884075370758, (float)-0.02939198261121969816,
};
static const float F44_3 [16 + 32] = { /* SNR(w) = 15.382598 dB, SNR = -29.402334 dB */
(float) 2.89072132015058161445, (float) 2.68932810943698754106, (float) 0.21083359339410251227, (float)-0.98385073324997617515,
(float)-1.11047823227097316719, (float)-2.18954076314139673147, (float)-2.36498032881953056225, (float)-0.95484132880101140785,
(float)-0.23924057925542965158, (float)-0.13865235703915925642, (float) 0.43587843191057992846, (float) 0.65903257226026665927,
(float) 0.24361815372443152787, (float)-0.00235974960154720097, (float) 0.01844166574603346289, (float) 0.01722945988740875099,
(float) 2.89072132015058161445, (float) 2.68932810943698754106, (float) 0.21083359339410251227, (float)-0.98385073324997617515,
(float)-1.11047823227097316719, (float)-2.18954076314139673147, (float)-2.36498032881953056225, (float)-0.95484132880101140785,
(float)-0.23924057925542965158, (float)-0.13865235703915925642, (float) 0.43587843191057992846, (float) 0.65903257226026665927,
(float) 0.24361815372443152787, (float)-0.00235974960154720097, (float) 0.01844166574603346289, (float) 0.01722945988740875099,
(float) 2.89072132015058161445, (float) 2.68932810943698754106, (float) 0.21083359339410251227, (float)-0.98385073324997617515,
(float)-1.11047823227097316719, (float)-2.18954076314139673147, (float)-2.36498032881953056225, (float)-0.95484132880101140785,
(float)-0.23924057925542965158, (float)-0.13865235703915925642, (float) 0.43587843191057992846, (float) 0.65903257226026665927,
(float) 0.24361815372443152787, (float)-0.00235974960154720097, (float) 0.01844166574603346289, (float) 0.01722945988740875099
};
static double scalar16_(const float* x, const float* y)
{
return
x[ 0]*y[ 0] + x[ 1]*y[ 1] + x[ 2]*y[ 2] + x[ 3]*y[ 3] +
x[ 4]*y[ 4] + x[ 5]*y[ 5] + x[ 6]*y[ 6] + x[ 7]*y[ 7] +
x[ 8]*y[ 8] + x[ 9]*y[ 9] + x[10]*y[10] + x[11]*y[11] +
x[12]*y[12] + x[13]*y[13] + x[14]*y[14] + x[15]*y[15];
}
void FLAC__replaygain_synthesis__init_dither_context(DitherContext *d, int bits, int shapingtype)
{
static unsigned char default_dither [] = { 92, 92, 88, 84, 81, 78, 74, 67, 0, 0 };
static const float* F [] = { F44_0, F44_1, F44_2, F44_3 };
int index;
if (shapingtype < 0) shapingtype = 0;
if (shapingtype > 3) shapingtype = 3;
d->ShapingType = (NoiseShaping)shapingtype;
index = bits - 11 - shapingtype;
if (index < 0) index = 0;
if (index > 9) index = 9;
memset ( d->ErrorHistory , 0, sizeof (d->ErrorHistory ) );
memset ( d->DitherHistory, 0, sizeof (d->DitherHistory) );
d->FilterCoeff = F [shapingtype];
d->Mask = ((FLAC__uint64)-1) << (32 - bits);
d->Add = 0.5 * ((1L << (32 - bits)) - 1);
d->Dither = 0.01f*default_dither[index] / (((FLAC__int64)1) << bits);
d->LastHistoryIndex = 0;
}
/*
* the following is based on parts of wavegain.c
*/
static FLAC__INLINE FLAC__int64 dither_output_(DitherContext *d, FLAC__bool do_dithering, int shapingtype, int i, double Sum, int k)
{
double doubletmp, Sum2;
FLAC__int64 val;
#define ROUND64(x) ( doubletmp = (x) + d->Add + (FLAC__int64)FLAC__I64L(0x001FFFFD80000000), *(FLAC__int64*)(&doubletmp) - (FLAC__int64)FLAC__I64L(0x433FFFFD80000000) )
if(do_dithering) {
if(shapingtype == 0) {
double tmp = random_equi_(d->Dither);
Sum2 = tmp - d->LastRandomNumber [k];
d->LastRandomNumber [k] = (int)tmp;
Sum2 = Sum += Sum2;
val = ROUND64(Sum2) & d->Mask;
}
else {
Sum2 = random_triangular_(d->Dither) - scalar16_(d->DitherHistory[k], d->FilterCoeff + i);
Sum += d->DitherHistory [k] [(-1-i)&15] = (float)Sum2;
Sum2 = Sum + scalar16_(d->ErrorHistory [k], d->FilterCoeff + i);
val = ROUND64(Sum2) & d->Mask;
d->ErrorHistory [k] [(-1-i)&15] = (float)(Sum - val);
}
return val;
}
else
return ROUND64(Sum);
#undef ROUND64
}
#if 0
float peak = 0.f,
new_peak,
factor_clip
double scale,
dB;
...
peak is in the range -32768.0 .. 32767.0
/* calculate factors for ReplayGain and ClippingPrevention */
*track_gain = GetTitleGain() + settings->man_gain;
scale = (float) pow(10., *track_gain * 0.05);
if(settings->clip_prev) {
factor_clip = (float) (32767./( peak + 1));
if(scale < factor_clip)
factor_clip = 1.f;
else
factor_clip /= scale;
scale *= factor_clip;
}
new_peak = (float) peak * scale;
dB = 20. * log10(scale);
*track_gain = (float) dB;
const double scale = pow(10., (double)gain * 0.05);
#endif
size_t FLAC__replaygain_synthesis__apply_gain(FLAC__byte *data_out, FLAC__bool little_endian_data_out, FLAC__bool unsigned_data_out, const FLAC__int32 * const input[], unsigned wide_samples, unsigned channels, const unsigned source_bps, const unsigned target_bps, const double scale, const FLAC__bool hard_limit, FLAC__bool do_dithering, DitherContext *dither_context)
{
static const FLAC__int32 conv_factors_[33] = {
-1, /* 0 bits-per-sample (not supported) */
-1, /* 1 bits-per-sample (not supported) */
-1, /* 2 bits-per-sample (not supported) */
-1, /* 3 bits-per-sample (not supported) */
268435456, /* 4 bits-per-sample */
134217728, /* 5 bits-per-sample */
67108864, /* 6 bits-per-sample */
33554432, /* 7 bits-per-sample */
16777216, /* 8 bits-per-sample */
8388608, /* 9 bits-per-sample */
4194304, /* 10 bits-per-sample */
2097152, /* 11 bits-per-sample */
1048576, /* 12 bits-per-sample */
524288, /* 13 bits-per-sample */
262144, /* 14 bits-per-sample */
131072, /* 15 bits-per-sample */
65536, /* 16 bits-per-sample */
32768, /* 17 bits-per-sample */
16384, /* 18 bits-per-sample */
8192, /* 19 bits-per-sample */
4096, /* 20 bits-per-sample */
2048, /* 21 bits-per-sample */
1024, /* 22 bits-per-sample */
512, /* 23 bits-per-sample */
256, /* 24 bits-per-sample */
128, /* 25 bits-per-sample */
64, /* 26 bits-per-sample */
32, /* 27 bits-per-sample */
16, /* 28 bits-per-sample */
8, /* 29 bits-per-sample */
4, /* 30 bits-per-sample */
2, /* 31 bits-per-sample */
1 /* 32 bits-per-sample */
};
static const FLAC__int64 hard_clip_factors_[33] = {
0, /* 0 bits-per-sample (not supported) */
0, /* 1 bits-per-sample (not supported) */
0, /* 2 bits-per-sample (not supported) */
0, /* 3 bits-per-sample (not supported) */
-8, /* 4 bits-per-sample */
-16, /* 5 bits-per-sample */
-32, /* 6 bits-per-sample */
-64, /* 7 bits-per-sample */
-128, /* 8 bits-per-sample */
-256, /* 9 bits-per-sample */
-512, /* 10 bits-per-sample */
-1024, /* 11 bits-per-sample */
-2048, /* 12 bits-per-sample */
-4096, /* 13 bits-per-sample */
-8192, /* 14 bits-per-sample */
-16384, /* 15 bits-per-sample */
-32768, /* 16 bits-per-sample */
-65536, /* 17 bits-per-sample */
-131072, /* 18 bits-per-sample */
-262144, /* 19 bits-per-sample */
-524288, /* 20 bits-per-sample */
-1048576, /* 21 bits-per-sample */
-2097152, /* 22 bits-per-sample */
-4194304, /* 23 bits-per-sample */
-8388608, /* 24 bits-per-sample */
-16777216, /* 25 bits-per-sample */
-33554432, /* 26 bits-per-sample */
-67108864, /* 27 bits-per-sample */
-134217728, /* 28 bits-per-sample */
-268435456, /* 29 bits-per-sample */
-536870912, /* 30 bits-per-sample */
-1073741824, /* 31 bits-per-sample */
(FLAC__int64)(-1073741824) * 2 /* 32 bits-per-sample */
};
const FLAC__int32 conv_factor = conv_factors_[target_bps];
const FLAC__int64 hard_clip_factor = hard_clip_factors_[target_bps];
/*
* The integer input coming in has a varying range based on the
* source_bps. We want to normalize it to [-1.0, 1.0) so instead
* of doing two multiplies on each sample, we just multiple
* 'scale' by 1/(2^(source_bps-1))
*/
const double multi_scale = scale / (double)(1u << (source_bps-1));
FLAC__byte * const start = data_out;
unsigned i, channel;
const FLAC__int32 *input_;
double sample;
const unsigned bytes_per_sample = target_bps / 8;
const unsigned last_history_index = dither_context->LastHistoryIndex;
NoiseShaping noise_shaping = dither_context->ShapingType;
FLAC__int64 val64;
FLAC__int32 val32;
FLAC__int32 uval32;
const FLAC__uint32 twiggle = 1u << (target_bps - 1);
FLAC__ASSERT(channels > 0 && channels <= FLAC_SHARE__MAX_SUPPORTED_CHANNELS);
FLAC__ASSERT(source_bps >= 4);
FLAC__ASSERT(target_bps >= 4);
FLAC__ASSERT(source_bps <= 32);
FLAC__ASSERT(target_bps < 32);
FLAC__ASSERT((target_bps & 7) == 0);
for(channel = 0; channel < channels; channel++) {
const unsigned incr = bytes_per_sample * channels;
data_out = start + bytes_per_sample * channel;
input_ = input[channel];
for(i = 0; i < wide_samples; i++, data_out += incr) {
sample = (double)input_[i] * multi_scale;
if(hard_limit) {
/* hard 6dB limiting */
if(sample < -0.5)
sample = tanh((sample + 0.5) / (1-0.5)) * (1-0.5) - 0.5;
else if(sample > 0.5)
sample = tanh((sample - 0.5) / (1-0.5)) * (1-0.5) + 0.5;
}
sample *= 2147483647.f;
val64 = dither_output_(dither_context, do_dithering, noise_shaping, (i + last_history_index) % 32, sample, channel) / conv_factor;
val32 = (FLAC__int32)val64;
if(val64 >= -hard_clip_factor)
val32 = (FLAC__int32)(-(hard_clip_factor+1));
else if(val64 < hard_clip_factor)
val32 = (FLAC__int32)hard_clip_factor;
uval32 = (FLAC__uint32)val32;
if (unsigned_data_out)
uval32 ^= twiggle;
if (little_endian_data_out) {
switch(target_bps) {
case 24:
data_out[2] = (FLAC__byte)(uval32 >> 16);
/* fall through */
case 16:
data_out[1] = (FLAC__byte)(uval32 >> 8);
/* fall through */
case 8:
data_out[0] = (FLAC__byte)uval32;
break;
}
}
else {
switch(target_bps) {
case 24:
data_out[0] = (FLAC__byte)(uval32 >> 16);
data_out[1] = (FLAC__byte)(uval32 >> 8);
data_out[2] = (FLAC__byte)uval32;
break;
case 16:
data_out[0] = (FLAC__byte)(uval32 >> 8);
data_out[1] = (FLAC__byte)uval32;
break;
case 8:
data_out[0] = (FLAC__byte)uval32;
break;
}
}
}
}
dither_context->LastHistoryIndex = (last_history_index + wide_samples) % 32;
return wide_samples * channels * (target_bps/8);
}
|