Plan 9 from Bell Labs’s /usr/web/sources/contrib/fernan/escomma/Matrix/Complex/LU.hs

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


-----------------------------------------------------------------------------
-- |
-- Module      :  DSP.Matrix.LU
-- Copyright   :  (c) Matthew Donadio 2003
-- License     :  GPL
--
-- Maintainer  :  [email protected]
-- Stability   :  experimental
-- Portability :  portable
--
-- Module implementing LU decomposition and related functions
--
-----------------------------------------------------------------------------

module Matrix.Complex.LU (psolve, lu, lu_solve, improve, inverse, lu_det, solve, det) where 

import Data.Array
import Complex
import Matrix.Complex.Pivot

-- | LU decomposition via Crout's Algorithm

-- TODO: modify for partial pivoting / permutation matrix
-- TODO: add singularity check

-- I am sure these are in G&VL, but the two cases of function f below are
-- formulas (2.3.13) and (2.3.12) from NRIC with some variable renaming

lu :: Array (Int,Int) (Complex Double) -- ^ A
   -> Array (Int,Int) (Complex Double) -- ^ LU(A)

lu a = a'
    where a' = array bnds [ ((i,j), luij i j) | (i,j) <- range bnds ]
	  luij i j | i>j  = (a!(i,j) - sum [ a'!(i,k) * a'!(k,j) | k <- [1 ..(j-1)] ]) / a'!(j,j)
		   | i<=j =  a!(i,j) - sum [ a'!(i,k) * a'!(k,j) | k <- [1 ..(i-1)] ]
	  bnds = bounds a

-- | Solution to Ax=b via LU decomposition

-- forward is forumla (2.3.6) in NRIC, but remebering that a11=1
-- backward is forumla (2.3.7) in NRIC

lu_solve :: Array (Int,Int) (Complex Double) -- ^ LU(A)
	 -> Array Int (Complex Double) -- ^ b
	 -> Array Int (Complex Double) -- ^ x

lu_solve a b = x
    where x = array (1,n) ([(n,xn)] ++ [ (i, backward i) | i <- (reverse [1..(n-1)]) ])
 	  y = array (1,n) ([(1,y1)] ++ [ (i, forward i)  | i <- [2..n] ])
	  y1         = b!1
	  forward  i = (b!i - sum [ a!(i,j) * y!j | j <- [1..(i-1)] ])
	  xn         = y!n / a!(n,n)
	  backward i = (y!i - sum [ a!(i,j) * x!j | j <- [(i+1)..n] ]) / a!(i,i)
	  ((_,_),(n,_)) = bounds a

-- | Improve a solution to Ax=b via LU decomposition

-- formula (2.7.4) from NRIC

improve :: Array (Int,Int) (Complex Double) -- ^ A
	-> Array (Int,Int) (Complex Double) -- ^ LU(A)
	-> Array Int (Complex Double) -- ^ b
	-> Array Int (Complex Double) -- ^ x
	-> Array Int (Complex Double) -- ^ x'

improve a a_lu b x = array (1,n) [ (i, x!i - err!i) | i <- [1..n] ]
    where err = lu_solve a_lu rhs
	  rhs = array (1,n) [ (i, sum [ a!(i,j) * x!j | j <- [1..n] ] - b!i) | i <- [1..n] ]
	  ((_,_),(n,_)) = bounds a

-- | Matrix inversion via LU decomposition

-- Section (2.4) from NRIC

-- TODO: build in improve

inverse :: Array (Int,Int) (Complex Double) -- ^ A
	-> Array (Int,Int) (Complex Double) -- ^ A^-1

inverse a = a'
    where a' = array (bounds a) (arrange (makecols (lu a)) 1)
	  makecol i n = array (1,n) [ (j, (\i j->if i == j then 1.0 else 0.0) i j) | j <- [1..n] ] 
	  makecols a = [ lu_solve a (makecol i n) | i <- [1..n] ]
	  ((_,_),(n,_)) = bounds a
	  arrange []     _ = []
	  arrange (m:ms) j = (flatten m j) ++ (arrange ms (j+1))
	  flatten m j = map (\(i,x) -> ((i,j),x)) (assocs m)

-- | Determinant of a matrix via LU decomposition

-- Formula (2.5.1) from NRIC

lu_det :: Array (Int,Int) (Complex Double) -- ^ LU(A)
       -> (Complex Double) -- ^ det(A)

lu_det a = product [ a!(i,i) | i <- [ 1 .. n] ]
    where ((_,_),(n,_)) = bounds a


-- | LU solver using original matrix

solve :: Array (Int,Int) (Complex Double) -- ^ A
	 -> Array Int (Complex Double) -- ^ b
	 -> Array Int (Complex Double) -- ^ x

solve a b = (lu_solve . lu) a b

psolve :: Array (Int,Int) (Complex Double) -- ^ A
	 -> Array Int (Complex Double) -- ^ b
	 -> Array Int (Complex Double) -- ^ x

psolve a b = (lu_solve . lu) (mswap pv a) (vswap pv b)
             where pv = permute a


-- | determinant using original matrix

det :: Array (Int,Int) (Complex Double) -- ^ A
    -> (Complex Double) -- ^ det(A)

det a = (lu_det . lu) a

-------------------------------------------------------------------------------
-- tests
-------------------------------------------------------------------------------

{-

a = array ((1,1),(3,3)) [ ((1,1), 1.0), ((1,2), 2.0), ((1,3),  3.0),
			  ((2,1), 2.0), ((2,2), 5.0), ((2,3),  3.0),
			  ((3,1), 1.0), ((3,2), 0.0), ((3,3),  8.0) ]
a' = array ((1,1),(3,3)) [ ((1,1), -40.0), ((1,2), 16.0), ((1,3),  9.0),
  			   ((2,1),  13.0), ((2,2), -5.0), ((2,3), -3.0),
			   ((3,1),   5.0), ((3,2), -2.0), ((3,3), -1.0) ]

a_lu = lu a
b = array (1,3) [ (1, 1.0), (2, 2.0), (3, 5.0) ]
x   = lu_solve a_lu b
x'  = improve a a_lu b x
x'' = improve a a_lu b x'

verify = a' == inverse a && -- tests lu, lu_solve, and inverse
	 det a == -1 &&     -- tests lu_det
	 x == x' &&         -- tests improve
	 x' == x''

-}

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to [email protected].