-----------------------------------------------------------------------------
-- |
-- Module : Matrix.Cholesky
-- Copyright : (c) Matthew Donadio 2003
-- License : GPL
--
-- Maintainer : [email protected]
-- Stability : experimental
-- Portability : portable
--
-- This module contains an implementation of Levinson-Durbin recursion.
--
-----------------------------------------------------------------------------
module Matrix.Levinson (levinson) where
import Data.Array
import Data.Complex
-- * Functions
-- Section 6.3.3 in Kay, formulas 6.46--6.48
-- TODO: rho is typing as complex, but it is real
-- TODO: add stepdown function
-- TODO: some applications may want all model estimations from [1..p]
-- | levinson takes an array, r, of autocorrelation values, and a
-- model order, p, and returns an array, a, of the model estimate and
-- rho, the noise power.
levinson :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -- ^ r
-> a -- ^ p
-> (Array a (Complex b),b) -- ^ (a,rho)
levinson r p = (array (1,p) [ (k, a!(p,k)) | k <- [1..p] ], realPart (rho!p))
where a = array ((1,1),(p,p)) [ ((k,i), ak k i) | k <- [1..p], i <- [1..k] ]
rho = array (1,p) [ (k, rhok k) | k <- [1..p] ]
ak 1 1 = -r!1 / r!0
ak k i | k==i = -(r!k + sum [ a!(k-1,l) * r!(k-l) | l <- [1..(k-1)] ]) / rho!(k-1)
| otherwise = a!(k-1,i) + a!(k,k) * (conjugate (a!(k-1,k-i)))
rhok 1 = (1 - (abs (a!(1,1)))^2) * r!0
rhok k = (1 - (abs (a!(k,k)))^2) * rho!(k-1)
-- r = array (0,2) [ (0, (2.0 :+ 0.0)), (1, ((-1.0) :+ 1.0)), (2, (0.0 :+ 0.0)) ]
-- a = fst (levinson r 2)
-- verify = a == array (1,2) [(1,1.0 :+ (-1.0)),(2,0.0 :+ (-1.0))]
|