Plan 9 from Bell Labs’s /usr/web/sources/contrib/fernan/nhc98/src/libraries/parsec/examples/tiger/matrix.tig

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


let

type vec    = array of int
type vector = {dim : int, d : vec}

type mat    = array of vector
type matrix = {x : int, y : int, d : mat}

function vectorCreate(n : int) : vector =
  vector{dim = n, d = vec[n] of 0}

function vectorLiftedAdd(X : vector, Y : vector) : vector =
  let var tmp : vector := vectorCreate(X.dim)
   in for i := 0 to X.dim do
        tmp.d[i] := X.d[i] + Y.d[i];
      tmp
  end

function vectorLiftedMul(X : vector, Y : vector) : vector =
  let var tmp : vector := vectorCreate(X.dim)
   in for i := 0 to X.dim do
        tmp.d[i] := X.d[i] * Y.d[i];
      tmp
  end

function vectorInProduct(X : vector, Y : vector) : int =
  let var tmp : int := 0
   in for i := 0 to X.dim do
        tmp := tmp + X.d[i] * Y.d[i];
      tmp
  end



function matrixCreate(n : int, m : int) : matrix =
  let var tmp := matrix{x = n, y = m, d = mat[n] of nil}
   in for i := 0 to n do 
        tmp.d[i] := vectorCreate(m);
      tmp
  end

function matrixRow(A : matrix, i : int) : vector =
  A.d[i]

function matrixCol(A : matrix, j : int) : vector =
  let var tmp := vectorCreate(A.y)
   in for i := 0 to A.y do
        tmp.d[i] := A.d[i].d[j];
      tmp
  end

function matrixTranspose(A : matrix) : matrix =
  let var tmp := matrixCreate(A.y, A.x)
   in for i := 0 to A.x do
        for j := 0 to A.y do
          tmp.d[j].d[i] := A.d[i].d[j];
      tmp
  end

function matrixLiftedAdd(A : matrix, B : matrix) : matrix =
  let var tmp := matrixCreate(A.x, A.y)
   in if A.x <> B.x | A.y <> B.y then exit(1)
      else for i := 0 to A.x do
             for j := 0 to A.y do
               tmp.d[i].d[j] := A.d[i].d[j] + B.d[i].d[j];
      tmp
  end

function matrixLiftedMul(A : matrix, B : matrix) : matrix =
  let var tmp := matrixCreate(A.x, A.y)
   in if A.x <> B.x | A.y <> B.y then exit(1)
      else for i := 0 to A.x do
             for j := 0 to A.y do
               tmp.d[i].d[j] := A.d[i].d[j] * B.d[i].d[j];
      tmp
  end

function matrixMul(A : matrix, B : matrix) : matrix =
  let var tmp := matrixCreate(A.x, B.y)
   in if A.y <> B.x then exit(1)
      else for i := 0 to A.x do
             for j := 0 to B.y do
               tmp.d[i].d[j] := vectorInProduct(matrixRow(A,i), matrixCol(B,j));
      tmp
  end

function createDiagMat(X : vector) : matrix =
  let var tmp := matrixCreate(X.dim, X.dim)
   in for i := 0 to X.dim do
        tmp.d[i].d[i] := X.d[i];
      tmp
  end

/* matrixMul(A, B) where B is a diagonal matrix, which can be represented
 by a vector
*/

function matrixMulDiag(A : matrix, X : vector) : matrix =
  let var tmp := matrixCreate(A.x, A.y)
   in if A.y <> X.dim then exit(1)
      else for i := 0 to A.x do
             for j := 0 to A.y do
               tmp.d[i].d[j] := A.d[i].d[j] * X.d[j];
      tmp
  end

/* Challenge: matrixMul(A, createDiagMat(X)) == matrixMulDiag(A, X)
i.e., derive the rhs from the lhs by specialization

What are the laws involved?

Challenge: matrixMul(A, create5shapeMatrix(a,b,c,d,e)) == efficient algorithm

*/

in

  /* matrixLiftedAdd(matrixCreate(8),matrixCreate(8)) */

  matrixMul(A, createDiagMat(X))

end

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to [email protected].