module InferMonad (Infer, returnI, eachI, thenI, guardI, useI, getSubI,
substituteI, unifyI, freshI, freshesI)
where
import Maybe (Maybe, returnM, eachM, thenM, failM, guardM, theM, existsM, useM)
import StateX (StateX, returnSX, eachSX, thenSX, toSX, putSX, getSX, useSX)
import Type (TVarId, TConId, MonoType (TVar, TCon), freeTVarMono)
import Substitution (Sub, applySub, lookupSub, emptySub, extendSub, domSub, unifySub)
type Counter = Int
data Infer x = MkI (StateX Sub (StateX Counter (Maybe ((x, Sub), Counter))))
rep (MkI xJ) = xJ
returnI :: x -> Infer x
returnI x = MkI (returnSX (returnSX returnM) x)
eachI :: Infer x -> (x -> y) -> Infer y
xI `eachI` f = MkI (eachSX (eachSX eachM) (rep xI) f)
thenI :: Infer x -> (x -> Infer y) -> Infer y
xI `thenI` kI = MkI (thenSX (thenSX thenM) (rep xI) (rep . kI))
failI :: Infer x
failI = MkI (toSX (eachSX eachM) (toSX eachM failM))
useI :: x -> Infer x -> x
useI xfail = useM xfail
. useSX eachM 0
. useSX (eachSX eachM) emptySub
. rep
guardI :: Bool -> Infer x -> Infer x
guardI b xI = if b then xI else failI
putSubI :: Sub -> Infer ()
putSubI s = MkI (putSX (returnSX returnM) s)
getSubI :: Infer Sub
getSubI = MkI (getSX (returnSX returnM))
putCounterI :: Counter -> Infer ()
putCounterI c = MkI (toSX (eachSX eachM) (putSX returnM c))
getCounterI :: Infer Counter
getCounterI = MkI (toSX (eachSX eachM) (getSX returnM))
substituteI :: MonoType -> Infer MonoType
substituteI t = getSubI `thenI` (\ s ->
returnI (applySub s t))
unifyI :: MonoType -> MonoType -> Infer ()
unifyI t u = getSubI `thenI` (\ s ->
let sM = unifySub t u s
in
existsM sM `guardI` (
putSubI (theM sM) `thenI` (\ () ->
returnI ())))
freshI :: Infer MonoType
freshI = getCounterI `thenI` (\c ->
putCounterI (c+1) `thenI` (\() ->
returnI (TVar ("a" ++ show c))))
freshesI :: Int -> Infer [MonoType]
freshesI 0 = returnI []
freshesI n = freshI `thenI` (\x ->
freshesI (n-1) `thenI` (\xs ->
returnI (x:xs)))
|