--
-- Patricia Fasel
-- Los Alamos National Laboratory
-- 1990 August
--
module Utils (applyOpToMesh, coarseMesh, fineMesh, genRand, log2) where
import PicType
import Array -- 1.3
infix 1 =:
(=:) a b = (a,b)
-- apply the given operator to a mesh of given size
-- operator is applied to the position and to the 8 surrounding positions
-- so value(i,j) is decided by (i-1,j-1), (i,j-1), (i+1,j-1), etc.
-- corners and edges are handled as if the mesh was a torus
applyOpToMesh :: (Mesh -> Range -> Value) -> Mesh -> Indx -> Mesh
applyOpToMesh operator mesh n' =
array ((0,0), (n,n))
(-- corners (nw, ne, sw, se)
[(0,0) =: operator mesh [n, 0, 1, n, 0, 1]] ++
[(0,n) =: operator mesh [n, 0, 1, n1, n, 0]] ++
[(n,0) =: operator mesh [n1, n, 0, n, 0, 1]] ++
[(n,n) =: operator mesh [n1, n, 0, n1, n, 0]] ++
-- edges (top row, bottom row, left column, right column)
[(0,j) =: operator mesh [n, 0, n1, (j-1), j, (j+1)] | j<-[1..n1]] ++
[(n,j) =: operator mesh [n1, n, 0, (j-1), j, (j+1)] | j<-[1..n1]] ++
[(i,0) =: operator mesh [(i-1), i, (i+1), n, 0, 1] | i<-[1..n1]] ++
[(i,n) =: operator mesh [(i-1), i, (i+1), n1, n, 0] | i<-[1..n1]] ++
-- internal
[(i,j) =: operator mesh [(i-1), i, (i+1), (j-1), j, (j+1)]
| i <- [1..n1], j <- [1..n1]])
where
n = n'-1
n1 = n'-2
-- project a mesh onto a mesh of half the rank
-- a b c d e f a c e
-- g h i j k l => m o q
-- m n o p q r y 0 2
-- s t u v w x
-- y z 0 1 2 3
-- 4 5 6 7 8 9
coarseMesh :: Mesh -> Indx -> Mesh
coarseMesh mesh n =
array ((0,0), (nHalf,nHalf))
[(i,j) =: mesh!(i*2, j*2) | i <- [0..nHalf], j <- [0..nHalf]]
where
nHalf = n `div` 2 - 1
-- interpolate a mesh of half rank onto a full mesh
-- values aren't just copied but are a function of the letter shown
-- a b c d e f A B C
-- g h i j k l <= D E F
-- m n o p q r G H I
-- s t u v w x
-- y z 0 1 2 3
-- 4 5 6 7 8 9
--
-- a = A, c = B, e = C, m = D, o = E, q = F, y = G, 0 = H, 2 = I
-- g = .5(A+D), i = .5(B+E), k = .5(C+F), b = .5(A+B), d = .5(B+C), f = .5(C+A)
-- s = .5(D+G), u = .5(E+H), w = .5(F+I), n = .5(D+E), p = .5(E+F), r = .5(F+D)
-- 4 = .5(G+A), 6 = .5(H+B), 8 = .5(I+C), z = .5(G+H), 1 = .5(H+I), 3 = .5(I+G)
-- h = .25(A+B+D+E), j = .25(B+C+E+F), l = .25(C+A+F+D) ...
fineMesh :: Mesh -> Indx -> Mesh
fineMesh mesh nHalf' =
array ((0,0), (n,n))
(-- corners (nw, ne, sw, se)
[(0,0) =: 3] ++
[(0,n) =: 3] ++
[(n,0) =: 3] ++
[(n,n) =: 3] ++
-- edges (north, south)
[(0,2*j) =: 4| j<-[1..nHalf]] ++
[(0,2*j-1) =: 4| j<-[1..nHalf]] ++
[(n,2*j) =: 4| j<-[1..nHalf]] ++
[(n,2*j-1) =: 4| j<-[1..nHalf]] ++
-- edges (west, east)
[(2*i,0) =: 5| i<-[1..nHalf]] ++
[(2*i-1,0) =: 5| i<-[1..nHalf]] ++
[(2*i,n) =: 5| i<-[1..nHalf]] ++
[(2*i-1,n) =: 5| i<-[1..nHalf]] ++
-- interior
[(2*i,2*j) =: 6| i<-[1..nHalf], j<-[1..nHalf]] ++
[(2*i,2*j-1) =: 6| i<-[1..nHalf], j<-[1..nHalf]] ++
[(2*i-1,2*j) =: 6| i<-[1..nHalf], j<-[1..nHalf]] ++
[(2*i-1,2*j-1) =: 6| i<-[1..nHalf], j<-[1..nHalf]])
{-
array ((0,0), (n,n))
(-- corners (nw, ne, sw, se)
[(0,0) =: mesh!(0,0)] ++
[(0,n) =: 0.5*(mesh!(0,0) + mesh!(0,nHalf))] ++
[(n,0) =: 0.5*(mesh!(0,0) + mesh!(nHalf,0))] ++
[(n,n) =: 0.25*(mesh!(0,0) + mesh!(0,nHalf) + mesh!(nHalf,0) +
mesh!(nHalf,nHalf))] ++
-- edges (north, south)
[(0,2*j) =: mesh!(0,j)| j<-[1..nHalf]] ++
[(0,2*j-1) =: 0.5*(mesh!(0,j) + mesh!(0,j-1)) | j<-[1..nHalf]] ++
[(n,2*j) =: 0.5*(mesh!(0,j) + mesh!(nHalf,j)) | j<-[1..nHalf]] ++
[(n,2*j-1) =: 0.25*(mesh!(0,j) + mesh!(0,j-1) + mesh!(nHalf,j) +
mesh!(nHalf,j-1)) | j<-[1..nHalf]] ++
-- edges (west, east)
[(2*i,0) =: mesh!(i,0) | i<-[1..nHalf]] ++
[(2*i-1,0) =: 0.5*(mesh!(i,0) + mesh!(i,nHalf)) | i<-[1..nHalf]] ++
[(2*i,n) =: 0.5*(mesh!(i,0) + mesh!(i,nHalf)) | i<-[1..nHalf]] ++
[(2*i-1,n) =: 0.25*(mesh!(i,0) + mesh!(i,nHalf) + mesh!(i-1,0) +
mesh!(i-1,nHalf)) | i<-[1..nHalf]] ++
-- interior
[(2*i,2*j) =: mesh!(i,j) | i<-[1..nHalf], j<-[1..nHalf]] ++
[(2*i,2*j-1) =: 0.5*(mesh!(i,j) + mesh!(i,j-1))
| i<-[1..nHalf], j<-[1..nHalf]] ++
[(2*i-1,2*j) =: 0.5*(mesh!(i,j) + mesh!(i-1,j))
| i<-[1..nHalf], j<-[1..nHalf]] ++
[(2*i-1,2*j-1) =: 0.25*(mesh!(i,j) + mesh!(i,j-1) + mesh!(i-1,j) +
mesh!(i-1,j-1)) | i<-[1..nHalf], j<-[1..nHalf]])
-}
where
nHalf = nHalf'-1
n = 2 * nHalf' - 1
-- random number generator
genRand :: Value -> Value
genRand seed =
r1 / 655357
where
r1 = (31453257*seed + 271829) `fiRem` 655357
x `fiRem` m = x - fromIntegral ((truncate x `div` m) * m)
log2 :: Int -> Int
log2 n = log2' n 0
where
log2' n accum
| n > 1 = log2' (n `div` 2) (accum+1)
| otherwise = accum
|