/*
* Copyright (c) 1997-2003 by The XFree86 Project, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of the copyright holder(s)
* and author(s) shall not be used in advertising or otherwise to promote
* the sale, use or other dealings in this Software without prior written
* authorization from the copyright holder(s) and author(s).
*/
#define REDUCER
/*
* This file contains the interfaces to the bus-specific code
*/
#ifdef HAVE_XORG_CONFIG_H
#include <xorg-config.h>
#endif
#include <ctype.h>
#include <stdlib.h>
#include <unistd.h>
#include <X11/X.h>
#include "os.h"
#include "xf86.h"
#include "xf86Priv.h"
#include "xf86Resources.h"
/* Bus-specific headers */
#include "xf86Bus.h"
#define XF86_OS_PRIVS
#define NEED_OS_RAC_PROTOS
#include "xf86_OSproc.h"
#include "xf86RAC.h"
/* Entity data */
EntityPtr *xf86Entities = NULL; /* Bus slots claimed by drivers */
int xf86NumEntities = 0;
static int xf86EntityPrivateCount = 0;
BusAccPtr xf86BusAccInfo = NULL;
xf86AccessRec AccessNULL = {NULL,NULL,NULL};
xf86CurrentAccessRec xf86CurrentAccess = {NULL,NULL};
BusRec primaryBus = { BUS_NONE, {{0}}};
static Bool xf86ResAccessEnter = FALSE;
#ifdef REDUCER
/* Resources that temporarily conflict with estimated resources */
static resPtr AccReducers = NULL;
#endif
/* resource lists */
resPtr Acc = NULL;
resPtr osRes = NULL;
/* allocatable ranges */
resPtr ResRange = NULL;
/* predefined special resources */
_X_EXPORT resRange resVgaExclusive[] = {_VGA_EXCLUSIVE, _END};
_X_EXPORT resRange resVgaShared[] = {_VGA_SHARED, _END};
_X_EXPORT resRange resVgaMemShared[] = {_VGA_SHARED_MEM,_END};
_X_EXPORT resRange resVgaIoShared[] = {_VGA_SHARED_IO,_END};
_X_EXPORT resRange resVgaUnusedExclusive[] = {_VGA_EXCLUSIVE_UNUSED, _END};
_X_EXPORT resRange resVgaUnusedShared[] = {_VGA_SHARED_UNUSED, _END};
_X_EXPORT resRange resVgaSparseExclusive[] = {_VGA_EXCLUSIVE_SPARSE, _END};
_X_EXPORT resRange resVgaSparseShared[] = {_VGA_SHARED_SPARSE, _END};
_X_EXPORT resRange res8514Exclusive[] = {_8514_EXCLUSIVE, _END};
_X_EXPORT resRange res8514Shared[] = {_8514_SHARED, _END};
/* Flag: do we need RAC ? */
static Bool needRAC = FALSE;
static Bool doFramebufferMode = FALSE;
/* state change notification callback list */
static StateChangeNotificationPtr StateChangeNotificationList;
static void notifyStateChange(xf86NotifyState state);
#undef MIN
#define MIN(x,y) ((x<y)?x:y)
/*
* Call the bus probes relevant to the architecture.
*
* The only one available so far is for PCI and SBUS.
*/
void
xf86BusProbe(void)
{
xf86PciProbe();
#if (defined(__sparc__) || defined(__sparc)) && !defined(__OpenBSD__)
xf86SbusProbe();
#endif
}
/*
* Determine what bus type the busID string represents. The start of the
* bus-dependent part of the string is returned as retID.
*/
BusType
StringToBusType(const char* busID, const char **retID)
{
char *p, *s;
BusType ret = BUS_NONE;
/* If no type field, Default to PCI */
if (isdigit(busID[0])) {
if (retID)
*retID = busID;
return BUS_PCI;
}
s = xstrdup(busID);
p = strtok(s, ":");
if (p == NULL || *p == 0) {
xfree(s);
return BUS_NONE;
}
if (!xf86NameCmp(p, "pci") || !xf86NameCmp(p, "agp"))
ret = BUS_PCI;
if (!xf86NameCmp(p, "isa"))
ret = BUS_ISA;
if (!xf86NameCmp(p, "sbus"))
ret = BUS_SBUS;
if (ret != BUS_NONE)
if (retID)
*retID = busID + strlen(p) + 1;
xfree(s);
return ret;
}
/*
* Entity related code.
*/
void
xf86EntityInit(void)
{
int i;
resPtr *pprev_next;
resPtr res;
xf86AccessPtr pacc;
for (i = 0; i < xf86NumEntities; i++)
if (xf86Entities[i]->entityInit) {
if (xf86Entities[i]->access->busAcc)
((BusAccPtr)xf86Entities[i]->access->busAcc)->set_f
(xf86Entities[i]->access->busAcc);
pacc = xf86Entities[i]->access->fallback;
if (pacc->AccessEnable)
pacc->AccessEnable(pacc->arg);
xf86Entities[i]->entityInit(i,xf86Entities[i]->private);
if (pacc->AccessDisable)
pacc->AccessDisable(pacc->arg);
/* remove init resources after init is processed */
pprev_next = &Acc;
res = Acc;
while (res) {
if (res->res_type & ResInit && (res->entityIndex == i)) {
(*pprev_next) = res->next;
xfree(res);
} else
pprev_next = &(res->next);
res = (*pprev_next);
}
}
}
int
xf86AllocateEntity(void)
{
xf86NumEntities++;
xf86Entities = xnfrealloc(xf86Entities,
sizeof(EntityPtr) * xf86NumEntities);
xf86Entities[xf86NumEntities - 1] = xnfcalloc(1,sizeof(EntityRec));
xf86Entities[xf86NumEntities - 1]->entityPrivates =
xnfcalloc(sizeof(DevUnion) * xf86EntityPrivateCount, 1);
return (xf86NumEntities - 1);
}
static void
EntityEnter(void)
{
int i;
xf86AccessPtr pacc;
for (i = 0; i < xf86NumEntities; i++)
if (xf86Entities[i]->entityEnter) {
if (xf86Entities[i]->access->busAcc)
((BusAccPtr)xf86Entities[i]->access->busAcc)->set_f
(xf86Entities[i]->access->busAcc);
pacc = xf86Entities[i]->access->fallback;
if (pacc->AccessEnable)
pacc->AccessEnable(pacc->arg);
xf86Entities[i]->entityEnter(i,xf86Entities[i]->private);
if (pacc->AccessDisable)
pacc->AccessDisable(pacc->arg);
}
}
static void
EntityLeave(void)
{
int i;
xf86AccessPtr pacc;
for (i = 0; i < xf86NumEntities; i++)
if (xf86Entities[i]->entityLeave) {
if (xf86Entities[i]->access->busAcc)
((BusAccPtr)xf86Entities[i]->access->busAcc)->set_f
(xf86Entities[i]->access->busAcc);
pacc = xf86Entities[i]->access->fallback;
if (pacc->AccessEnable)
pacc->AccessEnable(pacc->arg);
xf86Entities[i]->entityLeave(i,xf86Entities[i]->private);
if (pacc->AccessDisable)
pacc->AccessDisable(pacc->arg);
}
}
_X_EXPORT Bool
xf86IsEntityPrimary(int entityIndex)
{
EntityPtr pEnt = xf86Entities[entityIndex];
if (primaryBus.type != pEnt->busType) return FALSE;
switch (pEnt->busType) {
case BUS_PCI:
return (pEnt->pciBusId.bus == primaryBus.id.pci.bus &&
pEnt->pciBusId.device == primaryBus.id.pci.device &&
pEnt->pciBusId.func == primaryBus.id.pci.func);
case BUS_ISA:
return TRUE;
case BUS_SBUS:
return (pEnt->sbusBusId.fbNum == primaryBus.id.sbus.fbNum);
default:
return FALSE;
}
}
_X_EXPORT Bool
xf86SetEntityFuncs(int entityIndex, EntityProc init, EntityProc enter,
EntityProc leave, pointer private)
{
if (entityIndex >= xf86NumEntities)
return FALSE;
xf86Entities[entityIndex]->entityInit = init;
xf86Entities[entityIndex]->entityEnter = enter;
xf86Entities[entityIndex]->entityLeave = leave;
xf86Entities[entityIndex]->private = private;
return TRUE;
}
Bool
xf86DriverHasEntities(DriverPtr drvp)
{
int i;
for (i = 0; i < xf86NumEntities; i++) {
if (xf86Entities[i]->driver == drvp)
return TRUE;
}
return FALSE;
}
_X_EXPORT void
xf86AddEntityToScreen(ScrnInfoPtr pScrn, int entityIndex)
{
if (entityIndex == -1)
return;
if (xf86Entities[entityIndex]->inUse &&
!(xf86Entities[entityIndex]->entityProp & IS_SHARED_ACCEL))
FatalError("Requested Entity already in use!\n");
pScrn->numEntities++;
pScrn->entityList = xnfrealloc(pScrn->entityList,
pScrn->numEntities * sizeof(int));
pScrn->entityList[pScrn->numEntities - 1] = entityIndex;
xf86Entities[entityIndex]->access->next = pScrn->access;
pScrn->access = xf86Entities[entityIndex]->access;
xf86Entities[entityIndex]->inUse = TRUE;
pScrn->entityInstanceList = xnfrealloc(pScrn->entityInstanceList,
pScrn->numEntities * sizeof(int));
pScrn->entityInstanceList[pScrn->numEntities - 1] = 0;
pScrn->domainIOBase = xf86Entities[entityIndex]->domainIO;
}
_X_EXPORT void
xf86SetEntityInstanceForScreen(ScrnInfoPtr pScrn, int entityIndex, int instance)
{
int i;
if (entityIndex == -1 || entityIndex >= xf86NumEntities)
return;
for (i = 0; i < pScrn->numEntities; i++) {
if (pScrn->entityList[i] == entityIndex) {
pScrn->entityInstanceList[i] = instance;
break;
}
}
}
/*
* XXX This needs to be updated for the case where a single entity may have
* instances associated with more than one screen.
*/
_X_EXPORT ScrnInfoPtr
xf86FindScreenForEntity(int entityIndex)
{
int i,j;
if (entityIndex == -1) return NULL;
if (xf86Screens) {
for (i = 0; i < xf86NumScreens; i++) {
for (j = 0; j < xf86Screens[i]->numEntities; j++) {
if ( xf86Screens[i]->entityList[j] == entityIndex )
return (xf86Screens[i]);
}
}
}
return NULL;
}
_X_EXPORT void
xf86RemoveEntityFromScreen(ScrnInfoPtr pScrn, int entityIndex)
{
int i;
EntityAccessPtr *ptr = (EntityAccessPtr *)&pScrn->access;
EntityAccessPtr peacc;
for (i = 0; i < pScrn->numEntities; i++) {
if (pScrn->entityList[i] == entityIndex) {
peacc = xf86Entities[pScrn->entityList[i]]->access;
(*ptr) = peacc->next;
/* disable entity: call disable func */
if (peacc->pAccess && peacc->pAccess->AccessDisable)
peacc->pAccess->AccessDisable(peacc->pAccess->arg);
/* also disable fallback - just in case */
if (peacc->fallback && peacc->fallback->AccessDisable)
peacc->fallback->AccessDisable(peacc->fallback->arg);
for (i++; i < pScrn->numEntities; i++)
pScrn->entityList[i-1] = pScrn->entityList[i];
pScrn->numEntities--;
xf86Entities[entityIndex]->inUse = FALSE;
break;
}
ptr = &(xf86Entities[pScrn->entityList[i]]->access->next);
}
}
/*
* xf86ClearEntitiesForScreen() - called when a screen is deleted
* to mark it's entities unused. Called by xf86DeleteScreen().
*/
void
xf86ClearEntityListForScreen(int scrnIndex)
{
ScrnInfoPtr pScrn = xf86Screens[scrnIndex];
EntityAccessPtr peacc;
int i, entityIndex;
if (pScrn->entityList == NULL || pScrn->numEntities == 0) return;
for (i = 0; i < pScrn->numEntities; i++) {
entityIndex = pScrn->entityList[i];
xf86Entities[entityIndex]->inUse = FALSE;
/* disable resource: call the disable function */
peacc = xf86Entities[entityIndex]->access;
if (peacc->pAccess && peacc->pAccess->AccessDisable)
peacc->pAccess->AccessDisable(peacc->pAccess->arg);
/* and the fallback function */
if (peacc->fallback && peacc->fallback->AccessDisable)
peacc->fallback->AccessDisable(peacc->fallback->arg);
/* shared resources are only needed when entity is active: remove */
xf86DeallocateResourcesForEntity(entityIndex, ResShared);
}
xfree(pScrn->entityList);
xfree(pScrn->entityInstanceList);
if (pScrn->CurrentAccess->pIoAccess == (EntityAccessPtr)pScrn->access)
pScrn->CurrentAccess->pIoAccess = NULL;
if (pScrn->CurrentAccess->pMemAccess == (EntityAccessPtr)pScrn->access)
pScrn->CurrentAccess->pMemAccess = NULL;
pScrn->entityList = NULL;
pScrn->entityInstanceList = NULL;
}
_X_EXPORT void
xf86DeallocateResourcesForEntity(int entityIndex, unsigned long type)
{
resPtr *pprev_next = &Acc;
resPtr res = Acc;
while (res) {
if (res->entityIndex == entityIndex &&
(type & ResAccMask & res->res_type))
{
(*pprev_next) = res->next;
xfree(res);
} else
pprev_next = &(res->next);
res = (*pprev_next);
}
}
/*
* Add an extra device section (GDevPtr) to an entity.
*/
void
xf86AddDevToEntity(int entityIndex, GDevPtr dev)
{
EntityPtr pEnt;
if (entityIndex >= xf86NumEntities)
return;
pEnt = xf86Entities[entityIndex];
pEnt->numInstances++;
pEnt->devices = xnfrealloc(pEnt->devices,
pEnt->numInstances * sizeof(GDevPtr));
pEnt->devices[pEnt->numInstances - 1] = dev;
dev->claimed = TRUE;
}
/*
* xf86GetEntityInfo() -- This function hands information from the
* EntityRec struct to the drivers. The EntityRec structure itself
* remains invisible to the driver.
*/
_X_EXPORT EntityInfoPtr
xf86GetEntityInfo(int entityIndex)
{
EntityInfoPtr pEnt;
int i;
if (entityIndex >= xf86NumEntities)
return NULL;
pEnt = xnfcalloc(1,sizeof(EntityInfoRec));
pEnt->index = entityIndex;
pEnt->location = xf86Entities[entityIndex]->bus;
pEnt->active = xf86Entities[entityIndex]->active;
pEnt->chipset = xf86Entities[entityIndex]->chipset;
pEnt->resources = xf86Entities[entityIndex]->resources;
pEnt->driver = xf86Entities[entityIndex]->driver;
if ( (xf86Entities[entityIndex]->devices) &&
(xf86Entities[entityIndex]->devices[0]) ) {
for (i = 0; i < xf86Entities[entityIndex]->numInstances; i++)
if (xf86Entities[entityIndex]->devices[i]->screen == 0)
break;
pEnt->device = xf86Entities[entityIndex]->devices[i];
} else
pEnt->device = NULL;
return pEnt;
}
_X_EXPORT int
xf86GetNumEntityInstances(int entityIndex)
{
if (entityIndex >= xf86NumEntities)
return -1;
return xf86Entities[entityIndex]->numInstances;
}
_X_EXPORT GDevPtr
xf86GetDevFromEntity(int entityIndex, int instance)
{
int i;
/* We might not use AddDevtoEntity */
if ( (!xf86Entities[entityIndex]->devices) ||
(!xf86Entities[entityIndex]->devices[0]) )
return NULL;
if (entityIndex >= xf86NumEntities ||
instance >= xf86Entities[entityIndex]->numInstances)
return NULL;
for (i = 0; i < xf86Entities[entityIndex]->numInstances; i++)
if (xf86Entities[entityIndex]->devices[i]->screen == instance)
break;
return xf86Entities[entityIndex]->devices[i];
}
/*
* general generic disable function.
*/
static void
disableAccess(void)
{
int i;
xf86AccessPtr pacc;
EntityAccessPtr peacc;
/* call disable funcs and reset current access pointer */
/* the entity specific access funcs are in an enabled */
/* state - driver must restore their state explicitely */
for (i = 0; i < xf86NumScreens; i++) {
peacc = xf86Screens[i]->CurrentAccess->pIoAccess;
while (peacc) {
if (peacc->pAccess && peacc->pAccess->AccessDisable)
peacc->pAccess->AccessDisable(peacc->pAccess->arg);
peacc = peacc->next;
}
xf86Screens[i]->CurrentAccess->pIoAccess = NULL;
peacc = xf86Screens[i]->CurrentAccess->pMemAccess;
while (peacc) {
if (peacc->pAccess && peacc->pAccess->AccessDisable)
peacc->pAccess->AccessDisable(peacc->pAccess->arg);
peacc = peacc->next;
}
xf86Screens[i]->CurrentAccess->pMemAccess = NULL;
}
/* then call the generic entity disable funcs */
for (i = 0; i < xf86NumEntities; i++) {
pacc = xf86Entities[i]->access->fallback;
if (pacc->AccessDisable)
pacc->AccessDisable(pacc->arg);
}
}
static void
clearAccess(void)
{
int i;
/* call disable funcs and reset current access pointer */
/* the entity specific access funcs are in an enabled */
/* state - driver must restore their state explicitely */
for (i = 0; i < xf86NumScreens; i++) {
xf86Screens[i]->CurrentAccess->pIoAccess = NULL;
xf86Screens[i]->CurrentAccess->pMemAccess = NULL;
}
}
/*
* Generic interface to bus specific code - add other buses here
*/
/*
* xf86AccessInit() - set up everything needed for access control
* called only once on first server generation.
*/
void
xf86AccessInit(void)
{
initPciState();
initPciBusState();
DisablePciBusAccess();
DisablePciAccess();
xf86ResAccessEnter = TRUE;
}
/*
* xf86AccessEnter() -- gets called to save the text mode VGA IO
* resources when reentering the server after a VT switch.
*/
void
xf86AccessEnter(void)
{
if (xf86ResAccessEnter)
return;
/*
* on enter we simply disable routing of special resources
* to any bus and let the RAC code to "open" the right bridges.
*/
PciBusStateEnter();
DisablePciBusAccess();
PciStateEnter();
disableAccess();
EntityEnter();
notifyStateChange(NOTIFY_ENTER);
xf86EnterServerState(SETUP);
xf86ResAccessEnter = TRUE;
}
/*
* xf86AccessLeave() -- prepares access for and calls the
* entityLeave() functions.
* xf86AccessLeaveState() --- gets called to restore the
* access to the VGA IO resources when switching VT or on
* server exit.
* This was split to call xf86AccessLeaveState() from
* ddxGiveUp().
*/
void
xf86AccessLeave(void)
{
if (!xf86ResAccessEnter)
return;
notifyStateChange(NOTIFY_LEAVE);
disableAccess();
DisablePciBusAccess();
EntityLeave();
}
void
xf86AccessLeaveState(void)
{
if (!xf86ResAccessEnter)
return;
xf86ResAccessEnter = FALSE;
PciStateLeave();
PciBusStateLeave();
}
/*
* xf86AccessRestoreState() - Restore the access registers to the
* state before X was started. This is handy for framebuffers.
*/
static void
xf86AccessRestoreState(void)
{
if (!xf86ResAccessEnter)
return;
PciStateLeave();
PciBusStateLeave();
}
/*
* xf86EnableAccess() -- enable access to controlled resources.
* To reduce latency when switching access the ScrnInfoRec has
* a linked list of the EntityAccPtr of all screen entities.
*/
/*
* switching access needs to be done in te following oder:
* disable
* 1. disable old entity
* 2. reroute bus
* 3. enable new entity
* Otherwise resources needed for access control might be shadowed
* by other resources!
*/
_X_EXPORT void
xf86EnableAccess(ScrnInfoPtr pScrn)
{
register EntityAccessPtr peAcc = (EntityAccessPtr) pScrn->access;
register EntityAccessPtr pceAcc;
register xf86AccessPtr pAcc;
EntityAccessPtr tmp;
#ifdef DEBUG
ErrorF("Enable access %i\n",pScrn->scrnIndex);
#endif
/* Entity is not under access control or currently enabled */
if (!pScrn->access) {
if (pScrn->busAccess) {
((BusAccPtr)pScrn->busAccess)->set_f(pScrn->busAccess);
}
return;
}
switch (pScrn->resourceType) {
case IO:
pceAcc = pScrn->CurrentAccess->pIoAccess;
if (peAcc == pceAcc) {
return;
}
if (pScrn->CurrentAccess->pMemAccess == pceAcc)
pScrn->CurrentAccess->pMemAccess = NULL;
while (pceAcc) {
pAcc = pceAcc->pAccess;
if ( pAcc && pAcc->AccessDisable)
(*pAcc->AccessDisable)(pAcc->arg);
pceAcc = pceAcc->next;
}
if (pScrn->busAccess)
((BusAccPtr)pScrn->busAccess)->set_f(pScrn->busAccess);
while (peAcc) {
pAcc = peAcc->pAccess;
if (pAcc && pAcc->AccessEnable)
(*pAcc->AccessEnable)(pAcc->arg);
peAcc = peAcc->next;
}
pScrn->CurrentAccess->pIoAccess = (EntityAccessPtr) pScrn->access;
return;
case MEM_IO:
pceAcc = pScrn->CurrentAccess->pIoAccess;
if (peAcc != pceAcc) { /* current Io != pAccess */
tmp = pceAcc;
while (pceAcc) {
pAcc = pceAcc->pAccess;
if (pAcc && pAcc->AccessDisable)
(*pAcc->AccessDisable)(pAcc->arg);
pceAcc = pceAcc->next;
}
pceAcc = pScrn->CurrentAccess->pMemAccess;
if (peAcc != pceAcc /* current Mem != pAccess */
&& tmp !=pceAcc) {
while (pceAcc) {
pAcc = pceAcc->pAccess;
if (pAcc && pAcc->AccessDisable)
(*pAcc->AccessDisable)(pAcc->arg);
pceAcc = pceAcc->next;
}
}
} else { /* current Io == pAccess */
pceAcc = pScrn->CurrentAccess->pMemAccess;
if (pceAcc == peAcc) { /* current Mem == pAccess */
return;
}
while (pceAcc) { /* current Mem != pAccess */
pAcc = pceAcc->pAccess;
if (pAcc && pAcc->AccessDisable)
(*pAcc->AccessDisable)(pAcc->arg);
pceAcc = pceAcc->next;
}
}
if (pScrn->busAccess)
((BusAccPtr)pScrn->busAccess)->set_f(pScrn->busAccess);
while (peAcc) {
pAcc = peAcc->pAccess;
if (pAcc && pAcc->AccessEnable)
(*pAcc->AccessEnable)(pAcc->arg);
peAcc = peAcc->next;
}
pScrn->CurrentAccess->pMemAccess =
pScrn->CurrentAccess->pIoAccess = (EntityAccessPtr) pScrn->access;
return;
case MEM:
pceAcc = pScrn->CurrentAccess->pMemAccess;
if (peAcc == pceAcc) {
return;
}
if (pScrn->CurrentAccess->pIoAccess == pceAcc)
pScrn->CurrentAccess->pIoAccess = NULL;
while (pceAcc) {
pAcc = pceAcc->pAccess;
if ( pAcc && pAcc->AccessDisable)
(*pAcc->AccessDisable)(pAcc->arg);
pceAcc = pceAcc->next;
}
if (pScrn->busAccess)
((BusAccPtr)pScrn->busAccess)->set_f(pScrn->busAccess);
while (peAcc) {
pAcc = peAcc->pAccess;
if (pAcc && pAcc->AccessEnable)
(*pAcc->AccessEnable)(pAcc->arg);
peAcc = peAcc->next;
}
pScrn->CurrentAccess->pMemAccess = (EntityAccessPtr) pScrn->access;
return;
case NONE:
if (pScrn->busAccess) {
((BusAccPtr)pScrn->busAccess)->set_f(pScrn->busAccess);
}
return;
}
}
_X_EXPORT void
xf86SetCurrentAccess(Bool Enable, ScrnInfoPtr pScrn)
{
EntityAccessPtr pceAcc2 = NULL;
register EntityAccessPtr pceAcc = NULL;
register xf86AccessPtr pAcc;
switch(pScrn->resourceType) {
case IO:
pceAcc = pScrn->CurrentAccess->pIoAccess;
break;
case MEM:
pceAcc = pScrn->CurrentAccess->pMemAccess;
break;
case MEM_IO:
pceAcc = pScrn->CurrentAccess->pMemAccess;
pceAcc2 = pScrn->CurrentAccess->pIoAccess;
break;
default:
break;
}
while (pceAcc) {
pAcc = pceAcc->pAccess;
if ( pAcc) {
if (!Enable) {
if (pAcc->AccessDisable)
(*pAcc->AccessDisable)(pAcc->arg);
} else {
if (pAcc->AccessEnable)
(*pAcc->AccessEnable)(pAcc->arg);
}
}
pceAcc = pceAcc->next;
if (!pceAcc) {
pceAcc = pceAcc2;
pceAcc2 = NULL;
}
}
}
_X_EXPORT void
xf86SetAccessFuncs(EntityInfoPtr pEnt, xf86SetAccessFuncPtr funcs,
xf86SetAccessFuncPtr oldFuncs)
{
AccessFuncPtr rac;
if (!xf86Entities[pEnt->index]->rac)
xf86Entities[pEnt->index]->rac = xnfcalloc(1,sizeof(AccessFuncRec));
rac = xf86Entities[pEnt->index]->rac;
if (funcs->mem == funcs->io_mem && funcs->mem && funcs->io)
xf86Entities[pEnt->index]->entityProp |= NO_SEPARATE_MEM_FROM_IO;
if (funcs->io == funcs->io_mem && funcs->mem && funcs->io)
xf86Entities[pEnt->index]->entityProp |= NO_SEPARATE_IO_FROM_MEM;
rac->mem_new = funcs->mem;
rac->io_new = funcs->io;
rac->io_mem_new = funcs->io_mem;
rac->old = oldFuncs;
}
/*
* Conflict checking
*/
static memType
getMask(memType val)
{
memType mask = 0;
memType tmp = 0;
mask=~mask;
tmp = ~((~tmp) >> 1);
while (!(val & tmp)) {
mask = mask >> 1;
val = val << 1;
}
return mask;
}
/*
* checkConflictBlock() -- check for conflicts of a block resource range.
* If conflict is found return end of conflicting range. Else return 0.
*/
static memType
checkConflictBlock(resRange *range, resPtr pRes)
{
memType val,tmp,prev;
int i;
switch (pRes->res_type & ResExtMask) {
case ResBlock:
if (range->rBegin < pRes->block_end &&
range->rEnd > pRes->block_begin) {
#ifdef DEBUG
ErrorF("b-b conflict w: %lx %lx\n",
pRes->block_begin,pRes->block_end);
#endif
return pRes->block_end < range->rEnd ?
pRes->block_end : range->rEnd;
}
return 0;
case ResSparse:
if (pRes->sparse_base > range->rEnd) return 0;
val = (~pRes->sparse_mask | pRes->sparse_base) & getMask(range->rEnd);
#ifdef DEBUG
ErrorF("base = 0x%lx, mask = 0x%lx, begin = 0x%lx, end = 0x%lx ,"
"val = 0x%lx\n",
pRes->sparse_base, pRes->sparse_mask, range->rBegin,
range->rEnd, val);
#endif
i = sizeof(memType) * 8;
tmp = prev = pRes->sparse_base;
while (i) {
tmp |= 1<< (--i) & val;
if (tmp > range->rEnd)
tmp = prev;
else
prev = tmp;
}
if (tmp >= range->rBegin) {
#ifdef DEBUG
ErrorF("conflict found at: 0x%lx\n",tmp);
ErrorF("b-d conflict w: %lx %lx\n",
pRes->sparse_base,pRes->sparse_mask);
#endif
return tmp;
}
else
return 0;
}
return 0;
}
/*
* checkConflictSparse() -- check for conflicts of a sparse resource range.
* If conflict is found return base of conflicting region. Else return 0.
*/
#define mt_max ~(memType)0
#define length sizeof(memType) * 8
static memType
checkConflictSparse(resRange *range, resPtr pRes)
{
memType val, tmp, prev;
int i;
switch (pRes->res_type & ResExtMask) {
case ResSparse:
tmp = pRes->sparse_mask & range->rMask;
if ((tmp & pRes->sparse_base) == (tmp & range->rBase)) {
#ifdef DEBUG
ErrorF("s-b conflict w: %lx %lx\n",
pRes->sparse_base,pRes->sparse_mask);
#endif
return pRes->sparse_mask;
}
return 0;
case ResBlock:
if (pRes->block_end < range->rBase) return 0;
val = (~range->rMask | range->rBase) & getMask(pRes->block_end);
i = length;
tmp = prev = range->rBase;
while (i) {
#ifdef DEBUG
ErrorF("tmp = 0x%lx\n",tmp);
#endif
tmp |= 1<< (--i) & val;
if (tmp > pRes->block_end)
tmp = prev;
else
prev = tmp;
}
if (tmp < pRes->block_begin)
return 0;
else {
/*
* now we subdivide the block region in sparse regions
* with base values = 2^n and find the smallest mask.
* This might be done in a simpler way....
*/
memType mask, m_mask = 0, base = pRes->block_begin;
int i;
while (base < pRes->block_end) {
for (i = 1; i < length; i++)
if ( base != (base & (mt_max << i))) break;
mask = mt_max >> (length - i);
do mask >>= 1;
while ((mask + base + 1) > pRes->block_end);
/* m_mask and are _inverted_ sparse masks */
m_mask = mask > m_mask ? mask : m_mask;
base = base + mask + 1;
}
#ifdef DEBUG
ErrorF("conflict found at: 0x%lx\n",tmp);
ErrorF("b-b conflict w: %lx %lx\n",
pRes->block_begin,pRes->block_end);
#endif
return ~m_mask;
}
}
return 0;
}
#undef mt_max
#undef length
/*
* needCheck() -- this function decides whether to check for conflicts
* depending on the types of the resource ranges and their locations
*/
static Bool
needCheck(resPtr pRes, unsigned long type, int entityIndex, xf86State state)
{
/* the same entity shouldn't conflict with itself */
ScrnInfoPtr pScrn;
int i;
BusType loc = BUS_NONE;
BusType r_loc = BUS_NONE;
/* Ignore overlapped ranges that have been nullified */
if ((pRes->res_type & ResOverlap) && (pRes->block_begin > pRes->block_end))
return FALSE;
if ((pRes->res_type & ResTypeMask) != (type & ResTypeMask))
return FALSE;
/*
* Resources set by BIOS (ResBios) are allowed to conflict
* with resources marked (ResBios).
*/
if (pRes->res_type & type & ResBios)
return FALSE;
/*If requested, skip over estimated resources */
if (pRes->res_type & type & ResEstimated)
return FALSE;
if (type & pRes->res_type & ResUnused)
return FALSE;
if (state == OPERATING) {
if (type & ResDisableOpr || pRes->res_type & ResDisableOpr)
return FALSE;
if (type & pRes->res_type & ResUnusedOpr) return FALSE;
/*
* Maybe we should have ResUnused set The resUnusedOpr
* bit, too. This way we could avoid this confusion
*/
if ((type & ResUnusedOpr && pRes->res_type & ResUnused) ||
(type & ResUnused && pRes->res_type & ResUnusedOpr))
return FALSE;
}
if (entityIndex > -1)
loc = xf86Entities[entityIndex]->busType;
if (pRes->entityIndex > -1)
r_loc = xf86Entities[pRes->entityIndex]->busType;
switch (type & ResAccMask) {
case ResExclusive:
switch (pRes->res_type & ResAccMask) {
case ResExclusive:
break;
case ResShared:
/* ISA buses are only locally exclusive on a PCI system */
if (loc == BUS_ISA && r_loc == BUS_PCI)
return FALSE;
break;
}
break;
case ResShared:
switch (pRes->res_type & ResAccMask) {
case ResExclusive:
/* ISA buses are only locally exclusive on a PCI system */
if (loc == BUS_PCI && r_loc == BUS_ISA)
return FALSE;
break;
case ResShared:
return FALSE;
}
break;
case ResAny:
break;
}
if (pRes->entityIndex == entityIndex) return FALSE;
if (pRes->entityIndex > -1 &&
(pScrn = xf86FindScreenForEntity(entityIndex))) {
for (i = 0; i < pScrn->numEntities; i++)
if (pScrn->entityList[i] == pRes->entityIndex) return FALSE;
}
return TRUE;
}
/*
* checkConflict() - main conflict checking function which all other
* function call.
*/
static memType
checkConflict(resRange *rgp, resPtr pRes, int entityIndex,
xf86State state, Bool ignoreIdentical)
{
memType ret;
while(pRes) {
if (!needCheck(pRes,rgp->type, entityIndex ,state)) {
pRes = pRes->next;
continue;
}
switch (rgp->type & ResExtMask) {
case ResBlock:
if (rgp->rEnd < rgp->rBegin) {
xf86Msg(X_ERROR,"end of block range 0x%lx < begin 0x%lx\n",
rgp->rEnd,rgp->rBegin);
return 0;
}
if ((ret = checkConflictBlock(rgp, pRes))) {
if (!ignoreIdentical || (rgp->rBegin != pRes->block_begin)
|| (rgp->rEnd != pRes->block_end))
return ret;
}
break;
case ResSparse:
if ((rgp->rBase & rgp->rMask) != rgp->rBase) {
xf86Msg(X_ERROR,"sparse io range (base: 0x%lx mask: 0x%lx)"
"doesn't satisfy (base & mask = mask)\n",
rgp->rBase, rgp->rMask);
return 0;
}
if ((ret = checkConflictSparse(rgp, pRes))) {
if (!ignoreIdentical || (rgp->rBase != pRes->sparse_base)
|| (rgp->rMask != pRes->sparse_mask))
return ret;
}
break;
}
pRes = pRes->next;
}
return 0;
}
/*
* ChkConflict() -- used within xxxBus ; find conflict with any location.
*/
memType
ChkConflict(resRange *rgp, resPtr res, xf86State state)
{
return checkConflict(rgp, res, -2, state,FALSE);
}
/*
* xf86ChkConflict() - This function is the low level interface to
* the resource broker that gets exported. Tests all resources ie.
* performs test with SETUP flag.
*/
_X_EXPORT memType
xf86ChkConflict(resRange *rgp, int entityIndex)
{
return checkConflict(rgp, Acc, entityIndex, SETUP,FALSE);
}
/*
* Resources List handling
*/
_X_EXPORT resPtr
xf86JoinResLists(resPtr rlist1, resPtr rlist2)
{
resPtr pRes;
if (!rlist1)
return rlist2;
if (!rlist2)
return rlist1;
for (pRes = rlist1; pRes->next; pRes = pRes->next)
;
pRes->next = rlist2;
return rlist1;
}
_X_EXPORT resPtr
xf86AddResToList(resPtr rlist, resRange *range, int entityIndex)
{
resPtr new;
switch (range->type & ResExtMask) {
case ResBlock:
if (range->rEnd < range->rBegin) {
xf86Msg(X_ERROR,"end of block range 0x%lx < begin 0x%lx\n",
range->rEnd,range->rBegin);
return rlist;
}
break;
case ResSparse:
if ((range->rBase & range->rMask) != range->rBase) {
xf86Msg(X_ERROR,"sparse io range (base: 0x%lx mask: 0x%lx)"
"doesn't satisfy (base & mask = mask)\n",
range->rBase, range->rMask);
return rlist;
}
break;
}
new = xnfalloc(sizeof(resRec));
/*
* Only background resources may be registered with ResBios
* and ResEstimated set. Other resources only set it for
* testing.
*/
if (entityIndex != (-1))
range->type &= ~(ResBios | ResEstimated);
new->val = *range;
new->entityIndex = entityIndex;
new->next = rlist;
return new;
}
_X_EXPORT void
xf86FreeResList(resPtr rlist)
{
resPtr pRes;
if (!rlist)
return;
for (pRes = rlist->next; pRes; rlist = pRes, pRes = pRes->next)
xfree(rlist);
xfree(rlist);
}
_X_EXPORT resPtr
xf86DupResList(const resPtr rlist)
{
resPtr pRes, ret, prev, new;
if (!rlist)
return NULL;
ret = xnfalloc(sizeof(resRec));
*ret = *rlist;
prev = ret;
for (pRes = rlist->next; pRes; pRes = pRes->next) {
new = xnfalloc(sizeof(resRec));
*new = *pRes;
prev->next = new;
prev = new;
}
return ret;
}
_X_EXPORT void
xf86PrintResList(int verb, resPtr list)
{
int i = 0;
const char *s, *r;
resPtr tmp = list;
unsigned long type;
if (!list)
return;
type = ResMem;
r = "M";
while (1) {
while (list) {
if ((list->res_type & ResPhysMask) == type) {
switch (list->res_type & ResExtMask) {
case ResBlock:
xf86ErrorFVerb(verb,
"\t[%d] %d\t%ld\t0x%08lx - 0x%08lx (0x%lx)",
i, list->entityIndex,
(list->res_type & ResDomain) >> 24,
list->block_begin, list->block_end,
list->block_end - list->block_begin + 1);
break;
case ResSparse:
xf86ErrorFVerb(verb, "\t[%d] %d\t%ld\t0x%08lx - 0x%08lx ",
i, list->entityIndex,
(list->res_type & ResDomain) >> 24,
list->sparse_base,list->sparse_mask);
break;
default:
list = list->next;
continue;
}
xf86ErrorFVerb(verb, " %s", r);
switch (list->res_type & ResAccMask) {
case ResExclusive:
if (list->res_type & ResUnused)
s = "x";
else
s = "X";
break;
case ResShared:
if (list->res_type & ResUnused)
s = "s";
else
s = "S";
break;
default:
s = "?";
}
xf86ErrorFVerb(verb, "%s", s);
switch (list->res_type & ResExtMask) {
case ResBlock:
s = "[B]";
break;
case ResSparse:
s = "[S]";
break;
default:
s = "[?]";
}
xf86ErrorFVerb(verb, "%s", s);
if (list->res_type & ResEstimated)
xf86ErrorFVerb(verb, "E");
if (list->res_type & ResOverlap)
xf86ErrorFVerb(verb, "O");
if (list->res_type & ResInit)
xf86ErrorFVerb(verb, "t");
if (list->res_type & ResBios)
xf86ErrorFVerb(verb, "(B)");
if (list->res_type & ResBus)
xf86ErrorFVerb(verb, "(b)");
if (list->res_type & ResOprMask) {
switch (list->res_type & ResOprMask) {
case ResUnusedOpr:
s = "(OprU)";
break;
case ResDisableOpr:
s = "(OprD)";
break;
default:
s = "(Opr?)";
break;
}
xf86ErrorFVerb(verb, "%s", s);
}
xf86ErrorFVerb(verb, "\n");
i++;
}
list = list->next;
}
if (type == ResIo) break;
type = ResIo;
r = "I";
list = tmp;
}
}
resPtr
xf86AddRangesToList(resPtr list, resRange *pRange, int entityIndex)
{
while(pRange && pRange->type != ResEnd) {
list = xf86AddResToList(list,pRange,entityIndex);
pRange++;
}
return list;
}
void
xf86ResourceBrokerInit(void)
{
resPtr resPci;
osRes = NULL;
/* Get the addressable ranges */
ResRange = xf86BusAccWindowsFromOS();
xf86MsgVerb(X_INFO, 3, "Addressable bus resource ranges are\n");
xf86PrintResList(3, ResRange);
/* Get the ranges used exclusively by the system */
osRes = xf86AccResFromOS(osRes);
xf86MsgVerb(X_INFO, 3, "OS-reported resource ranges:\n");
xf86PrintResList(3, osRes);
/* Bus dep initialization */
resPci = ResourceBrokerInitPci(&osRes);
Acc = xf86JoinResLists(xf86DupResList(osRes), resPci);
xf86MsgVerb(X_INFO, 3, "All system resource ranges:\n");
xf86PrintResList(3, Acc);
}
#define MEM_ALIGN (1024 * 1024)
/*
* RemoveOverlaps() -- remove overlaps between resources of the
* same kind.
* Beware: This function doesn't check for access attributes.
* At resource broker initialization this is no problem as this
* only deals with exclusive resources.
*/
#if 0
void
RemoveOverlaps(resPtr target, resPtr list, Bool pow2Alignment, Bool useEstimated)
{
resPtr pRes;
memType size, newsize, adjust;
if (!target)
return;
for (pRes = list; pRes; pRes = pRes->next) {
if (pRes != target
&& ((pRes->res_type & ResTypeMask) ==
(target->res_type & ResTypeMask))
&& pRes->block_begin <= target->block_end
&& pRes->block_end >= target->block_begin) {
/* Possibly ignore estimated resources */
if (!useEstimated && (pRes->res_type & ResEstimated)) continue;
/*
* Target should be a larger region than pRes. If pRes fully
* contains target, don't do anything unless target can overlap.
*/
if (pRes->block_begin <= target->block_begin &&
pRes->block_end >= target->block_end) {
if (target->res_type & ResOverlap) {
/* Nullify range but keep its ResOverlap bit on */
target->block_end = target->block_begin - 1;
return;
}
continue;
}
/*
* In cases where the target and pRes have the same starting
* address, reduce the size of the target (given it's an estimate).
*/
if (pRes->block_begin == target->block_begin) {
if (target->res_type & ResOverlap)
target->block_end = target->block_begin - 1;
else
target->block_end = pRes->block_end;
}
/* Otherwise, trim target to remove the overlap */
else if (pRes->block_begin <= target->block_end) {
target->block_end = pRes->block_begin - 1;
} else if (!pow2Alignment &&
pRes->block_end >= target->block_begin) {
target->block_begin = pRes->block_end + 1;
}
if (pow2Alignment) {
/*
* Align to a power of two. This requires finding the
* largest power of two that is smaller than the adjusted
* size.
*/
size = target->block_end - target->block_begin + 1;
newsize = 1UL << (sizeof(memType) * 8 - 1);
while (!(newsize & size))
newsize >>= 1;
target->block_end = target->block_begin + newsize - 1;
} else if (target->block_end > MEM_ALIGN) {
/* Align the end to MEM_ALIGN */
if ((adjust = (target->block_end + 1) % MEM_ALIGN))
target->block_end -= adjust;
}
}
}
}
#else
void
RemoveOverlaps(resPtr target, resPtr list, Bool pow2Alignment, Bool useEstimated)
{
resPtr pRes;
memType size, newsize, adjust;
if (!target)
return;
if (!(target->res_type & ResEstimated) /* Don't touch sure resources */
&& !(target->res_type & ResOverlap)) /* Unless they may overlap */
return;
for (pRes = list; pRes; pRes = pRes->next) {
if (pRes == target
|| ((pRes->res_type & ResTypeMask) !=
(target->res_type & ResTypeMask))
|| pRes->block_begin > target->block_end
|| pRes->block_end < target->block_begin)
continue;
if (pRes->block_begin <= target->block_begin) {
/* Possibly ignore estimated resources */
if (!useEstimated && (pRes->res_type & ResEstimated))
continue;
/* Special cases */
if (pRes->block_end >= target->block_end) {
/*
* If pRes fully contains target, don't do anything
* unless target can overlap.
*/
if (target->res_type & ResOverlap) {
/* Nullify range but keep its ResOverlap bit on */
target->block_end = target->block_begin - 1;
return;
} else
continue;
} else {
#if 0 /* Don't trim start address - we trust what we got */
/*
* If !pow2Alignment trim start address: !pow2Alingment
* is only set when estimated OS addresses are handled.
* In cases where the target and pRes have the same
* starting address, reduce the size of the target
* (given it's an estimate).
*/
if (!pow2Alignment)
target->block_begin = pRes->block_end + 1;
else
#endif
if (pRes->block_begin == target->block_begin)
target->block_end = pRes->block_end;
else
continue;
}
} else {
/* Trim target to remove the overlap */
target->block_end = pRes->block_begin - 1;
}
if (pow2Alignment) {
/*
* Align to a power of two. This requires finding the
* largest power of two that is smaller than the adjusted
* size.
*/
size = target->block_end - target->block_begin + 1;
newsize = 1UL << (sizeof(memType) * 8 - 1);
while (!(newsize & size))
newsize >>= 1;
target->block_end = target->block_begin + newsize - 1;
} else if (target->block_end > MEM_ALIGN) {
/* Align the end to MEM_ALIGN */
if ((adjust = (target->block_end + 1) % MEM_ALIGN))
target->block_end -= adjust;
}
}
}
#endif
/*
* Resource request code
*/
#define ALIGN(x,a) ((x) + a) &~(a)
_X_EXPORT resRange
xf86GetBlock(unsigned long type, memType size,
memType window_start, memType window_end,
memType align_mask, resPtr avoid)
{
memType min, max, tmp;
resRange r = {ResEnd,0,0};
resPtr res_range = ResRange;
if (!size) return r;
if (window_end < window_start || (window_end - window_start) < (size - 1)) {
ErrorF("Requesting insufficient memory window!:"
" start: 0x%lx end: 0x%lx size 0x%lx\n",
window_start,window_end,size);
return r;
}
type = (type & ~(ResExtMask | ResBios | ResEstimated)) | ResBlock;
while (res_range) {
if ((type & ResTypeMask) == (res_range->res_type & ResTypeMask)) {
if (res_range->block_begin > window_start)
min = res_range->block_begin;
else
min = window_start;
if (res_range->block_end < window_end)
max = res_range->block_end;
else
max = window_end;
min = ALIGN(min,align_mask);
/* do not produce an overflow! */
while (min < max && (max - min) >= (size - 1)) {
RANGE(r,min,min + size - 1,type);
tmp = ChkConflict(&r,Acc,SETUP);
if (!tmp) {
tmp = ChkConflict(&r,avoid,SETUP);
if (!tmp) {
return r;
}
}
min = ALIGN(tmp,align_mask);
}
}
res_range = res_range->next;
}
RANGE(r,0,0,ResEnd);
return r;
}
#define mt_max ~(memType)0
#define length sizeof(memType) * 8
/*
* make_base() -- assign the lowest bits to the bits set in mask.
* example: mask 011010 val 0000110 -> 011000
*/
static memType
make_base(memType val, memType mask)
{
int i,j = 0;
memType ret = 0
;
for (i = 0;i<length;i++) {
if ((1 << i) & mask) {
ret |= (((val >> j) & 1) << i);
j++;
}
}
return ret;
}
/*
* make_base() -- assign the bits set in mask to the lowest bits.
* example: mask 011010 , val 010010 -> 000011
*/
static memType
unmake_base(memType val, memType mask)
{
int i,j = 0;
memType ret = 0;
for (i = 0;i<length;i++) {
if ((1 << i) & mask) {
ret |= (((val >> i) & 1) << j);
j++;
}
}
return ret;
}
static memType
fix_counter(memType val, memType old_mask, memType mask)
{
mask = old_mask & mask;
val = make_base(val,old_mask);
return unmake_base(val,mask);
}
_X_EXPORT resRange
xf86GetSparse(unsigned long type, memType fixed_bits,
memType decode_mask, memType address_mask, resPtr avoid)
{
resRange r = {ResEnd,0,0};
memType new_mask;
memType mask1;
memType base;
memType counter = 0;
memType counter1;
memType max_counter = ~(memType)0;
memType max_counter1;
memType conflict = 0;
/* for sanity */
type = (type & ~(ResExtMask | ResBios | ResEstimated)) | ResSparse;
/*
* a sparse address consists of 3 parts:
* fixed_bits: F bits which hard decoded by the hardware
* decode_bits: D bits which are used to decode address
* but which may be set by software
* address_bits: A bits which are used to address the
* sparse range.
* the decode_mask marks all decode bits while the address_mask
* masks out all address_bits:
* F D A
* decode_mask: 0 1 0
* address_mask: 1 1 0
*/
decode_mask &= address_mask;
new_mask = decode_mask;
/*
* We start by setting the decode_mask bits to different values
* when a conflict is found the address_mask of the conflicting
* resource is returned. We remove those bits from decode_mask
* that are also set in the returned address_mask as they always
* conflict with resources which use them as address masks.
* The resoulting mask is stored in new_mask.
* We continue until no conflict is found or until we have
* tried all possible settings of new_mask.
*/
while (1) {
base = make_base(counter,new_mask) | fixed_bits;
RANGE(r,base,address_mask,type);
conflict = ChkConflict(&r,Acc,SETUP);
if (!conflict) {
conflict = ChkConflict(&r,avoid,SETUP);
if (!conflict) {
return r;
}
}
counter = fix_counter(counter,new_mask,conflict);
max_counter = fix_counter(max_counter,new_mask,conflict);
new_mask &= conflict;
counter ++;
if (counter > max_counter) break;
}
if (!new_mask && (new_mask == decode_mask)) {
RANGE(r,0,0,ResEnd);
return r;
}
/*
* if we haven't been successful we also try to modify those
* bits in decode_mask that are not at the same time set in
* new mask. These bits overlap with address_bits of some
* resources. If a conflict with a resource of this kind is
* found (ie. returned_mask & mask1 != mask1) with
* mask1 = decode_mask & ~new_mask we cannot
* use our choice of bits in the new_mask part. We try
* another choice.
*/
max_counter = fix_counter(mt_max,mt_max,new_mask);
mask1 = decode_mask & ~new_mask;
max_counter1 = fix_counter(mt_max,mt_max,mask1);
counter = 0;
while (1) {
counter1 = 0;
while (1) {
base = make_base(counter1,mask1);
RANGE(r,base,address_mask,type);
conflict = ChkConflict(&r,Acc,SETUP);
if (!conflict) {
conflict = ChkConflict(&r,avoid,SETUP);
if (!conflict) {
return r;
}
}
counter1 ++;
if ((mask1 & conflict) != mask1 || counter1 > max_counter1)
break;
}
counter ++;
if (counter > max_counter) break;
}
RANGE(r,0,0,ResEnd);
return r;
}
#undef length
#undef mt_max
/*
* Resource registrarion
*/
static resList
xf86GetResourcesImplicitly(int entityIndex)
{
if (entityIndex >= xf86NumEntities) return NULL;
switch (xf86Entities[entityIndex]->bus.type) {
case BUS_ISA:
case BUS_NONE:
case BUS_SBUS:
return NULL;
case BUS_PCI:
return GetImplicitPciResources(entityIndex);
case BUS_last:
return NULL;
}
return NULL;
}
static void
convertRange2Host(int entityIndex, resRange *pRange)
{
if (pRange->type & ResBus) {
switch (xf86Entities[entityIndex]->busType) {
case BUS_PCI:
pciConvertRange2Host(entityIndex,pRange);
break;
case BUS_ISA:
isaConvertRange2Host(pRange);
break;
default:
break;
}
pRange->type &= ~ResBus;
}
}
static void
xf86ConvertListToHost(int entityIndex, resPtr list)
{
while (list) {
convertRange2Host(entityIndex, &list->val);
list = list->next;
}
}
/*
* xf86RegisterResources() -- attempts to register listed resources.
* If list is NULL it tries to obtain resources implicitly. Function
* returns a resPtr listing all resources not successfully registered.
*/
_X_EXPORT resPtr
xf86RegisterResources(int entityIndex, resList list, unsigned long access)
{
resPtr res = NULL;
resRange range;
resList list_f = NULL;
if (!list) {
list = xf86GetResourcesImplicitly(entityIndex);
/* these resources have to be in host address space already */
if (!list) return NULL;
list_f = list;
}
while(list->type != ResEnd) {
range = *list;
convertRange2Host(entityIndex,&range);
if ((access != ResNone) && (access & ResAccMask)) {
range.type = (range.type & ~ResAccMask) | (access & ResAccMask);
}
range.type &= ~ResEstimated; /* Not allowed for drivers */
#if !((defined(__alpha__) || (defined(__ia64__))) && defined(linux))
/* On Alpha Linux, do not check for conflicts, trust the kernel. */
if (checkConflict(&range, Acc, entityIndex, SETUP,TRUE))
res = xf86AddResToList(res,&range,entityIndex);
else
#endif
{
Acc = xf86AddResToList(Acc,&range,entityIndex);
}
list++;
}
if (list_f)
xfree(list_f);
#ifdef DEBUG
xf86MsgVerb(X_INFO, 3,"Resources after driver initialization\n");
xf86PrintResList(3, Acc);
if (res) xf86MsgVerb(X_INFO, 3,
"Failed Resources after driver initialization "
"for Entity: %i\n",entityIndex);
xf86PrintResList(3, res);
#endif
return res;
}
static void
busTypeSpecific(EntityPtr pEnt, xf86State state, xf86AccessPtr *acc_mem,
xf86AccessPtr *acc_io, xf86AccessPtr *acc_mem_io)
{
pciAccPtr *ppaccp;
switch (pEnt->bus.type) {
case BUS_ISA:
case BUS_SBUS:
*acc_mem = *acc_io = *acc_mem_io = &AccessNULL;
break;
break;
case BUS_PCI:
ppaccp = xf86PciAccInfo;
while (*ppaccp) {
if ((*ppaccp)->busnum == pEnt->pciBusId.bus
&& (*ppaccp)->devnum == pEnt->pciBusId.device
&& (*ppaccp)->funcnum == pEnt->pciBusId.func) {
*acc_io = &(*ppaccp)->ioAccess;
*acc_mem = &(*ppaccp)->memAccess;
*acc_mem_io = &(*ppaccp)->io_memAccess;
break;
}
ppaccp++;
}
break;
default:
*acc_mem = *acc_io = *acc_mem_io = NULL;
break;
}
return;
}
static void
setAccess(EntityPtr pEnt, xf86State state)
{
xf86AccessPtr acc_mem, acc_io, acc_mem_io;
xf86AccessPtr org_mem = NULL, org_io = NULL, org_mem_io = NULL;
int prop;
busTypeSpecific(pEnt,state,&acc_mem,&acc_io,&acc_mem_io);
/* The replacement function needs to handle _all_ shared resources */
/* unless they are handeled locally and disabled otherwise */
if (pEnt->rac) {
if (pEnt->rac->io_new) {
org_io = acc_io;
acc_io = pEnt->rac->io_new;
}
if (pEnt->rac->mem_new) {
org_mem = acc_mem;
acc_mem = pEnt->rac->mem_new;
}
if (pEnt->rac->io_mem_new) {
org_mem_io = acc_mem_io;
acc_mem_io = pEnt->rac->io_mem_new;
}
}
if (state == OPERATING) {
prop = pEnt->entityProp;
switch(pEnt->entityProp & NEED_SHARED) {
case NEED_SHARED:
pEnt->access->rt = MEM_IO;
break;
case NEED_IO_SHARED:
pEnt->access->rt = IO;
break;
case NEED_MEM_SHARED:
pEnt->access->rt = MEM;
break;
default:
pEnt->access->rt = NONE;
}
} else {
prop = NEED_SHARED | NEED_MEM | NEED_IO;
pEnt->access->rt = MEM_IO;
}
switch(pEnt->access->rt) {
case IO:
pEnt->access->pAccess = acc_io;
break;
case MEM:
pEnt->access->pAccess = acc_mem;
break;
case MEM_IO:
pEnt->access->pAccess = acc_mem_io;
break;
default: /* no conflicts at all */
pEnt->access->pAccess = NULL; /* remove from RAC */
break;
}
if (org_io) {
/* does the driver want the old access func? */
if (pEnt->rac->old) {
/* give it to the driver, leave state disabled */
pEnt->rac->old->io = org_io;
} else if (org_io->AccessEnable) {
/* driver doesn't want it - enable generic access */
org_io->AccessEnable(org_io->arg);
}
}
if (org_mem_io) {
/* does the driver want the old access func? */
if (pEnt->rac->old) {
/* give it to the driver, leave state disabled */
pEnt->rac->old->io_mem = org_mem_io;
} else if (org_mem_io->AccessEnable) {
/* driver doesn't want it - enable generic access */
org_mem_io->AccessEnable(org_mem_io->arg);
}
}
if (org_mem) {
/* does the driver want the old access func? */
if (pEnt->rac->old) {
/* give it to the driver, leave state disabled */
pEnt->rac->old->mem = org_mem;
} else if (org_mem->AccessEnable) {
/* driver doesn't want it - enable generic access */
org_mem->AccessEnable(org_mem->arg);
}
}
if (!(prop & NEED_MEM_SHARED)){
if (prop & NEED_MEM) {
if (acc_mem && acc_mem->AccessEnable)
acc_mem->AccessEnable(acc_mem->arg);
} else {
if (acc_mem && acc_mem->AccessDisable)
acc_mem->AccessDisable(acc_mem->arg);
}
}
if (!(prop & NEED_IO_SHARED)) {
if (prop & NEED_IO) {
if (acc_io && acc_io->AccessEnable)
acc_io->AccessEnable(acc_io->arg);
} else {
if (acc_io && acc_io->AccessDisable)
acc_io->AccessDisable(acc_io->arg);
}
}
/* disable shared resources */
if (pEnt->access->pAccess
&& pEnt->access->pAccess->AccessDisable)
pEnt->access->pAccess->AccessDisable(pEnt->access->pAccess->arg);
/*
* If device is not under access control it is enabled.
* If it needs bus routing do it here as it isn't bus
* type specific. Any conflicts should be checked at this
* stage
*/
if (!pEnt->access->pAccess
&& (pEnt->entityProp & (state == SETUP ? NEED_VGA_ROUTED_SETUP :
NEED_VGA_ROUTED)))
((BusAccPtr)pEnt->busAcc)->set_f(pEnt->busAcc);
}
/*
* xf86EnterServerState() -- set state the server is in.
*/
typedef enum { TRI_UNSET, TRI_TRUE, TRI_FALSE } TriState;
static void
SetSIGIOForState(xf86State state)
{
static int sigio_state;
static TriState sigio_blocked = TRI_UNSET;
if ((state == SETUP) && (sigio_blocked != TRI_TRUE)) {
sigio_state = xf86BlockSIGIO();
sigio_blocked = TRI_TRUE;
} else if ((state == OPERATING) && (sigio_blocked != TRI_UNSET)) {
xf86UnblockSIGIO(sigio_state);
sigio_blocked = TRI_FALSE;
}
}
_X_EXPORT void
xf86EnterServerState(xf86State state)
{
EntityPtr pEnt;
ScrnInfoPtr pScrn;
int i,j;
int needVGA = 0;
resType rt;
/*
* This is a good place to block SIGIO during SETUP state.
* SIGIO should be blocked in SETUP state otherwise (u)sleep()
* might get interrupted early.
* We take care not to call xf86BlockSIGIO() twice.
*/
SetSIGIOForState(state);
#ifdef DEBUG
if (state == SETUP)
ErrorF("Entering SETUP state\n");
else
ErrorF("Entering OPERATING state\n");
#endif
/* When servicing a dumb framebuffer we don't need to do anything */
if (doFramebufferMode) return;
for (i=0; i<xf86NumScreens; i++) {
pScrn = xf86Screens[i];
j = pScrn->entityList[pScrn->numEntities - 1];
pScrn->access = xf86Entities[j]->access;
for (j = 0; j<xf86Screens[i]->numEntities; j++) {
pEnt = xf86Entities[xf86Screens[i]->entityList[j]];
if (pEnt->entityProp & (state == SETUP ? NEED_VGA_ROUTED_SETUP
: NEED_VGA_ROUTED))
xf86Screens[i]->busAccess = pEnt->busAcc;
}
if (xf86Screens[i]->busAccess)
needVGA ++;
}
/*
* if we just have one screen we don't have RAC.
* Therefore just enable the screen and return.
*/
if (!needRAC) {
xf86EnableAccess(xf86Screens[0]);
notifyStateChange(NOTIFY_ENABLE);
return;
}
if (state == SETUP)
notifyStateChange(NOTIFY_SETUP_TRANSITION);
else
notifyStateChange(NOTIFY_OPERATING_TRANSITION);
clearAccess();
for (i=0; i<xf86NumScreens;i++) {
rt = NONE;
for (j = 0; j<xf86Screens[i]->numEntities; j++) {
pEnt = xf86Entities[xf86Screens[i]->entityList[j]];
setAccess(pEnt,state);
if (pEnt->access->rt != NONE) {
if (rt != NONE && rt != pEnt->access->rt)
rt = MEM_IO;
else
rt = pEnt->access->rt;
}
}
xf86Screens[i]->resourceType = rt;
if (rt == NONE) {
xf86Screens[i]->access = NULL;
if (needVGA < 2)
xf86Screens[i]->busAccess = NULL;
}
#ifdef DEBUG
if (xf86Screens[i]->busAccess)
ErrorF("Screen %i setting vga route\n",i);
#endif
switch (rt) {
case MEM_IO:
xf86MsgVerb(X_INFO, 3, "Screen %i shares mem & io resources\n",i);
break;
case IO:
xf86MsgVerb(X_INFO, 3, "Screen %i shares io resources\n",i);
break;
case MEM:
xf86MsgVerb(X_INFO, 3, "Screen %i shares mem resources\n",i);
break;
default:
xf86MsgVerb(X_INFO, 3, "Entity %i shares no resources\n",i);
break;
}
}
if (state == SETUP)
notifyStateChange(NOTIFY_SETUP);
else
notifyStateChange(NOTIFY_OPERATING);
}
/*
* xf86SetOperatingState() -- Set ResOperMask for resources listed.
*/
_X_EXPORT resPtr
xf86SetOperatingState(resList list, int entityIndex, int mask)
{
resPtr acc;
resPtr r_fail = NULL;
resRange range;
while (list->type != ResEnd) {
range = *list;
convertRange2Host(entityIndex,&range);
acc = Acc;
while (acc) {
#define MASK (ResTypeMask | ResExtMask)
if ((acc->entityIndex == entityIndex)
&& (acc->val.a == range.a) && (acc->val.b == range.b)
&& ((acc->val.type & MASK) == (range.type & MASK)))
break;
#undef MASK
acc = acc->next;
}
if (acc)
acc->val.type = (acc->val.type & ~ResOprMask)
| (mask & ResOprMask);
else {
r_fail = xf86AddResToList(r_fail,&range,entityIndex);
}
list ++;
}
return r_fail;
}
/*
* Stage specific code
*/
/*
* ProcessEstimatedConflicts() -- Do something about driver-registered
* resources that conflict with estimated resources. For now, just register
* them with a logged warning.
*/
#ifdef REDUCER
static void
ProcessEstimatedConflicts(void)
{
if (!AccReducers)
return;
/* Temporary */
xf86MsgVerb(X_WARNING, 3,
"Registering the following despite conflicts with estimated"
" resources:\n");
xf86PrintResList(3, AccReducers);
Acc = xf86JoinResLists(Acc, AccReducers);
AccReducers = NULL;
}
#endif
/*
* xf86ClaimFixedResources() -- This function gets called from the
* driver Probe() function to claim fixed resources.
*/
static void
resError(resList list)
{
FatalError("A driver tried to allocate the %s %sresource at \n"
"0x%lx:0x%lx which conflicted with another resource. Send the\n"
"output of the server to %s. Please \n"
"specify your computer hardware as closely as possible.\n",
ResIsBlock(list)?"Block":"Sparse",
ResIsMem(list)?"Mem":"Io",
ResIsBlock(list)?list->rBegin:list->rBase,
ResIsBlock(list)?list->rEnd:list->rMask,BUILDERADDR);
}
/*
* xf86ClaimFixedResources() is used to allocate non-relocatable resources.
* This should only be done by a driver's Probe() function.
*/
_X_EXPORT void
xf86ClaimFixedResources(resList list, int entityIndex)
{
resPtr ptr = NULL;
resRange range;
if (!list) return;
while (list->type !=ResEnd) {
range = *list;
convertRange2Host(entityIndex,&range);
range.type &= ~ResEstimated; /* Not allowed for drivers */
switch (range.type & ResAccMask) {
case ResExclusive:
if (!xf86ChkConflict(&range, entityIndex)) {
Acc = xf86AddResToList(Acc, &range, entityIndex);
#ifdef REDUCER
} else {
range.type |= ResEstimated;
if (!xf86ChkConflict(&range, entityIndex) &&
!checkConflict(&range, AccReducers, entityIndex,
SETUP, FALSE)) {
range.type &= ~(ResEstimated | ResBios);
AccReducers =
xf86AddResToList(AccReducers, &range, entityIndex);
#endif
} else resError(&range); /* no return */
#ifdef REDUCER
}
#endif
break;
case ResShared:
/* at this stage the resources are just added to the
* EntityRec. After the Probe() phase this list is checked by
* xf86PostProbe(). All resources which don't
* conflict with already allocated ones are allocated
* and removed from the EntityRec. Thus a non-empty resource
* list in the EntityRec indicates resource conflicts the
* driver should either handle or fail.
*/
if (xf86Entities[entityIndex]->active)
ptr = xf86AddResToList(ptr,&range,entityIndex);
break;
}
list++;
}
xf86Entities[entityIndex]->resources =
xf86JoinResLists(xf86Entities[entityIndex]->resources,ptr);
xf86MsgVerb(X_INFO, 3,
"resource ranges after xf86ClaimFixedResources() call:\n");
xf86PrintResList(3,Acc);
#ifdef REDUCER
ProcessEstimatedConflicts();
#endif
#ifdef DEBUG
if (ptr) {
xf86MsgVerb(X_INFO, 3, "to be registered later:\n");
xf86PrintResList(3,ptr);
}
#endif
}
static void
checkRoutingForScreens(xf86State state)
{
resList list = resVgaUnusedExclusive;
resPtr pResVGA = NULL;
resPtr pResVGAHost;
pointer vga = NULL;
int i,j;
int entityIndex;
EntityPtr pEnt;
resPtr pAcc;
resRange range;
/*
* find devices that need VGA routed: ie the ones that have
* registered VGA resources without ResUnused. ResUnused
* doesn't conflict with itself therefore use it here.
*/
while (list->type != ResEnd) { /* create resPtr from resList for VGA */
range = *list;
range.type &= ~(ResBios | ResEstimated); /* if set remove them */
pResVGA = xf86AddResToList(pResVGA, &range, -1);
list++;
}
for (i = 0; i < xf86NumScreens; i++) {
for (j = 0; j < xf86Screens[i]->numEntities; j++) {
entityIndex = xf86Screens[i]->entityList[j];
pEnt = xf86Entities[entityIndex];
pAcc = Acc;
vga = NULL;
pResVGAHost = xf86DupResList(pResVGA);
xf86ConvertListToHost(entityIndex,pResVGAHost);
while (pAcc) {
if (pAcc->entityIndex == entityIndex)
if (checkConflict(&pAcc->val, pResVGAHost,
entityIndex, state, FALSE)) {
if (vga && vga != pEnt->busAcc) {
xf86Msg(X_ERROR, "Screen %i needs vga routed to"
"different buses - deleting\n",i);
xf86DeleteScreen(i--,0);
}
#ifdef DEBUG
{
resPtr rlist = xf86AddResToList(NULL,&pAcc->val,
pAcc->entityIndex);
xf86MsgVerb(X_INFO,3,"====== %s\n",
state == OPERATING ? "OPERATING"
: "SETUP");
xf86MsgVerb(X_INFO,3,"%s Resource:\n",
(pAcc->val.type) & ResMem ? "Mem" :"Io");
xf86PrintResList(3,rlist);
xf86FreeResList(rlist);
xf86MsgVerb(X_INFO,3,"Conflicts with:\n");
xf86PrintResList(3,pResVGAHost);
xf86MsgVerb(X_INFO,3,"=====\n");
}
#endif
vga = pEnt->busAcc;
pEnt->entityProp |= (state == SETUP
? NEED_VGA_ROUTED_SETUP : NEED_VGA_ROUTED);
if (state == OPERATING) {
if (pAcc->val.type & ResMem)
pEnt->entityProp |= NEED_VGA_MEM;
else
pEnt->entityProp |= NEED_VGA_IO;
}
}
pAcc = pAcc->next;
}
if (vga)
xf86MsgVerb(X_INFO, 3,"Setting vga for screen %i.\n",i);
xf86FreeResList(pResVGAHost);
}
}
xf86FreeResList(pResVGA);
}
/*
* xf86PostProbe() -- Allocate all non conflicting resources
* This function gets called by xf86Init().
*/
void
xf86PostProbe(void)
{
memType val;
int i,j;
resPtr resp, acc, tmp, resp_x, *pprev_next;
if (fbSlotClaimed) {
if (pciSlotClaimed || isaSlotClaimed
#if (defined(__sparc__) || defined(__sparc)) && !defined(__OpenBSD__)
|| sbusSlotClaimed
#endif
) {
FatalError("Cannot run in framebuffer mode. Please specify busIDs "
" for all framebuffer devices\n");
return;
} else {
xf86Msg(X_INFO,"Running in FRAMEBUFFER Mode\n");
xf86AccessRestoreState();
notifyStateChange(NOTIFY_ENABLE);
doFramebufferMode = TRUE;
return;
}
}
/* don't compare against ResInit - remove it from clone.*/
acc = tmp = xf86DupResList(Acc);
pprev_next = &acc;
while (tmp) {
if (tmp->res_type & ResInit) {
(*pprev_next) = tmp->next;
xfree(tmp);
} else
pprev_next = &(tmp->next);
tmp = (*pprev_next);
}
for (i=0; i<xf86NumEntities; i++) {
resp = xf86Entities[i]->resources;
xf86Entities[i]->resources = NULL;
resp_x = NULL;
while (resp) {
if (! (val = checkConflict(&resp->val,acc,i,SETUP,FALSE))) {
resp->res_type &= ~(ResBios); /* just used for chkConflict() */
tmp = resp_x;
resp_x = resp;
resp = resp->next;
resp_x->next = tmp;
#ifdef REDUCER
} else {
resp->res_type |= ResEstimated;
if (!checkConflict(&resp->val, acc, i, SETUP, FALSE)) {
resp->res_type &= ~(ResEstimated | ResBios);
tmp = AccReducers;
AccReducers = resp;
resp = resp->next;
AccReducers->next = tmp;
#endif
} else {
xf86MsgVerb(X_INFO, 3, "Found conflict at: 0x%lx\n",val);
resp->res_type &= ~ResEstimated;
tmp = xf86Entities[i]->resources;
xf86Entities[i]->resources = resp;
resp = resp->next;
xf86Entities[i]->resources->next = tmp;
}
#ifdef REDUCER
}
#endif
}
xf86JoinResLists(Acc,resp_x);
#ifdef REDUCER
ProcessEstimatedConflicts();
#endif
}
xf86FreeResList(acc);
#if !(defined(__alpha__) && defined(linux)) && \
!(defined(__ia64__) && defined(linux)) && \
!(defined(__sparc64__) && defined(__OpenBSD__))
/*
* No need to validate on Alpha Linux or OpenBSD/sparc64,
* trust the kernel.
*/
ValidatePci();
#endif
xf86MsgVerb(X_INFO, 3, "resource ranges after probing:\n");
xf86PrintResList(3, Acc);
checkRoutingForScreens(SETUP);
for (i = 0; i < xf86NumScreens; i++) {
for (j = 0; j<xf86Screens[i]->numEntities; j++) {
EntityPtr pEnt = xf86Entities[xf86Screens[i]->entityList[j]];
if ((pEnt->entityProp & NEED_VGA_ROUTED_SETUP) &&
((xf86Screens[i]->busAccess = pEnt->busAcc)))
break;
}
}
}
static void
checkRequiredResources(int entityIndex)
{
resRange range;
resPtr pAcc = Acc;
const EntityPtr pEnt = xf86Entities[entityIndex];
while (pAcc) {
if (pAcc->entityIndex == entityIndex) {
range = pAcc->val;
/* ResAny to find conflicts with anything. */
range.type = (range.type & ~ResAccMask) | ResAny | ResBios;
if (checkConflict(&range,Acc,entityIndex,OPERATING,FALSE))
switch (pAcc->res_type & ResPhysMask) {
case ResMem:
pEnt->entityProp |= NEED_MEM_SHARED;
break;
case ResIo:
pEnt->entityProp |= NEED_IO_SHARED;
break;
}
if (!(pAcc->res_type & ResOprMask)) {
switch (pAcc->res_type & ResPhysMask) {
case ResMem:
pEnt->entityProp |= NEED_MEM;
break;
case ResIo:
pEnt->entityProp |= NEED_IO;
break;
}
}
}
pAcc = pAcc->next;
}
/* check if we can separately enable mem/io resources */
/* XXX we still need to find out how to set this yet */
if ( ((pEnt->entityProp & NO_SEPARATE_MEM_FROM_IO)
&& (pEnt->entityProp & NEED_MEM_SHARED))
|| ((pEnt->entityProp & NO_SEPARATE_IO_FROM_MEM)
&& (pEnt->entityProp & NEED_IO_SHARED)) )
pEnt->entityProp |= NEED_SHARED;
/*
* After we have checked all resources of an entity agains any
* other resource we know if the entity need this resource type
* (ie. mem/io) at all. if not we can disable this type completely,
* so no need to share it either.
*/
if ((pEnt->entityProp & NEED_MEM_SHARED)
&& (!(pEnt->entityProp & NEED_MEM))
&& (!(pEnt->entityProp & NO_SEPARATE_MEM_FROM_IO)))
pEnt->entityProp &= ~(unsigned long)NEED_MEM_SHARED;
if ((pEnt->entityProp & NEED_IO_SHARED)
&& (!(pEnt->entityProp & NEED_IO))
&& (!(pEnt->entityProp & NO_SEPARATE_IO_FROM_MEM)))
pEnt->entityProp &= ~(unsigned long)NEED_IO_SHARED;
}
void
xf86PostPreInit()
{
if (doFramebufferMode) return;
if (xf86NumScreens > 1)
needRAC = TRUE;
xf86MsgVerb(X_INFO, 3, "do I need RAC?");
if (needRAC) {
xf86ErrorFVerb(3, " Yes, I do.\n");
} else {
xf86ErrorFVerb(3, " No, I don't.\n");
}
xf86MsgVerb(X_INFO, 3, "resource ranges after preInit:\n");
xf86PrintResList(3, Acc);
}
void
xf86PostScreenInit(void)
{
int i,j;
ScreenPtr pScreen;
unsigned int flags;
int nummem = 0, numio = 0;
if (doFramebufferMode) {
SetSIGIOForState(OPERATING);
return;
}
#ifdef DEBUG
ErrorF("PostScreenInit generation: %i\n",serverGeneration);
#endif
if (serverGeneration == 1) {
checkRoutingForScreens(OPERATING);
for (i=0; i<xf86NumEntities; i++) {
checkRequiredResources(i);
}
/*
* after removing NEED_XXX_SHARED from entities that
* don't need need XXX resources at all we might have
* a single entity left that has NEED_XXX_SHARED set.
* In this case we can delete that, too.
*/
for (i = 0; i < xf86NumEntities; i++) {
if (xf86Entities[i]->entityProp & NEED_MEM_SHARED)
nummem++;
if (xf86Entities[i]->entityProp & NEED_IO_SHARED)
numio++;
}
for (i = 0; i < xf86NumEntities; i++) {
if (nummem < 2)
xf86Entities[i]->entityProp &= ~NEED_MEM_SHARED;
if (numio < 2)
xf86Entities[i]->entityProp &= ~NEED_IO_SHARED;
}
}
if (xf86Screens && needRAC) {
int needRACforVga = 0;
for (i = 0; i < xf86NumScreens; i++) {
for (j = 0; j < xf86Screens[i]->numEntities; j++) {
if (xf86Entities[xf86Screens[i]->entityList[j]]->entityProp
& NEED_VGA_ROUTED) {
needRACforVga ++;
break; /* only count each screen once */
}
}
}
for (i = 0; i < xf86NumScreens; i++) {
Bool needRACforMem = FALSE, needRACforIo = FALSE;
for (j = 0; j < xf86Screens[i]->numEntities; j++) {
if (xf86Entities[xf86Screens[i]->entityList[j]]->entityProp
& NEED_MEM_SHARED)
needRACforMem = TRUE;
if (xf86Entities[xf86Screens[i]->entityList[j]]->entityProp
& NEED_IO_SHARED)
needRACforIo = TRUE;
/*
* We may need RAC although we don't share any resources
* as we need to route VGA to the correct bus. This can
* only be done simultaniously for MEM and IO.
*/
if (needRACforVga > 1) {
if (xf86Entities[xf86Screens[i]->entityList[j]]->entityProp
& NEED_VGA_MEM)
needRACforMem = TRUE;
if (xf86Entities[xf86Screens[i]->entityList[j]]->entityProp
& NEED_VGA_IO)
needRACforIo = TRUE;
}
}
pScreen = xf86Screens[i]->pScreen;
flags = 0;
if (needRACforMem) {
flags |= xf86Screens[i]->racMemFlags;
xf86ErrorFVerb(3, "Screen %d is using RAC for mem\n", i);
}
if (needRACforIo) {
flags |= xf86Screens[i]->racIoFlags;
xf86ErrorFVerb(3, "Screen %d is using RAC for io\n", i);
}
xf86RACInit(pScreen,flags);
}
}
xf86EnterServerState(OPERATING);
}
/*
* Sets
*/
static resPtr
decomposeSparse(resRange range)
{
resRange new;
resPtr ret = NULL;
memType val = range.rBegin;
int i = 0;
new.type = (range.type & ~ResExtMask) | ResSparse;
while (1) {
if (val & 0x01) {
new.rBase = (val << i);
new.rMask = ~((1 << i) - 1);
ret = xf86AddResToList(ret,&new,-1);
val ++;
}
i++;
val >>= 1;
if ((((val + 1) << i) - 1) > range.rEnd)
break;
}
i--;
val <<= 1;
while (1) {
if((((val + 1) << i) - 1)> range.rEnd) {
if (--i < 0) break;
val <<= 1;
} else {
new.rBase = (val << i);
new.rMask = ~((1 << i) - 1);
val++;
ret = xf86AddResToList(ret,&new,-1);
}
}
return ret;
}
static Bool
x_isSubsetOf(resRange range, resPtr list1, resPtr list2)
{
resRange range1, range2;
memType m1_A_m2;
Bool ret;
resPtr list;
if (list1) {
list = list1;
if ((range.type & ResTypeMask) == (list->res_type & ResTypeMask)) {
switch (range.type & ResExtMask) {
case ResBlock:
if ((list->res_type & ResExtMask) == ResBlock) {
if (range.rBegin >= list->block_begin
&& range.rEnd <= list->block_end)
return TRUE;
else if (range.rBegin < list->block_begin
&& range.rEnd > list->block_end) {
RANGE(range1, range.rBegin, list->block_begin - 1,
range.type);
RANGE(range2, list->block_end + 1, range.rEnd,
range.type);
return (x_isSubsetOf(range1,list->next,list2) &&
x_isSubsetOf(range2,list->next,list2));
}
else if (range.rBegin >= list->block_begin
&& range.rBegin <= list->block_end) {
RANGE(range1, list->block_end + 1, range.rEnd,
range.type);
return (x_isSubsetOf(range1,list->next,list2));
} else if (range.rEnd >= list->block_begin
&& range.rEnd <= list->block_end) {
RANGE(range1,range.rBegin, list->block_begin - 1,
range.type);
return (x_isSubsetOf(range1,list->next,list2));
}
}
break;
case ResSparse:
if ((list->res_type & ResExtMask) == ResSparse) {
memType test;
int i;
m1_A_m2 = range.rMask & list->sparse_mask;
if ((range.rBase ^ list->sparse_base) & m1_A_m2)
break;
/*
* We use the following system:
* let 0 ^= mask:1 base:0, 1 ^= mask:1 base:1,
* X mask:0 ; S: set TSS: test set for subset
* NTSS: new test set after test
* S: 1 0 1 0 X X 0 1 X
* TSS: 1 0 0 1 1 0 X X X
* T: 0 0 1 1 0 0 0 0 0
* NTSS: 1 0 0/X 1/X 1 0 1 0 X
* R: 0 0 0 0 0 0 1 1 0
* If R != 0 TSS and S are disjunct
* If R == 0 TSS is subset of S
* If R != 0 NTSS contains elements from TSS
* which are not also members of S.
* If a T is set one of the correspondig bits
* in NTSS must be set to the specified value
* all other are X
*/
test = list->sparse_mask & ~range.rMask;
if (test == 0)
return TRUE;
for (i = 0; i < sizeof(memType); i++) {
if ((test >> i) & 0x1) {
RANGE(range1, ((range.rBase & list->sparse_base)
| (range.rBase & ~list->sparse_mask)
| ((~list->sparse_base & list->sparse_mask)
& ~range.rMask)) & range1.rMask,
((range.rMask | list->sparse_mask) & ~test)
| (1 << i), range.type);
return (x_isSubsetOf(range1,list->next,list2));
}
}
}
break;
}
}
return (x_isSubsetOf(range,list->next,list2));
} else if (list2) {
resPtr tmpList = NULL;
switch (range.type & ResExtMask) {
case ResBlock:
tmpList = decomposeSparse(range);
while (tmpList) {
if (!x_isSubsetOf(tmpList->val,list2,NULL)) {
xf86FreeResList(tmpList);
return FALSE;
}
tmpList = tmpList->next;
}
xf86FreeResList(tmpList);
return TRUE;
break;
case ResSparse:
while (list2) {
tmpList = xf86JoinResLists(tmpList,decomposeSparse(list2->val));
list2 = list2->next;
}
ret = x_isSubsetOf(range,tmpList,NULL);
xf86FreeResList(tmpList);
return ret;
break;
}
} else
return FALSE;
return FALSE;
}
Bool
xf86IsSubsetOf(resRange range, resPtr list)
{
resPtr dup = xf86DupResList(list);
resPtr r_sp = NULL, r = NULL, tmp = NULL;
Bool ret = FALSE;
while (dup) {
tmp = dup;
dup = dup->next;
switch (tmp->res_type & ResExtMask) {
case ResBlock:
tmp->next = r;
r = tmp;
break;
case ResSparse:
tmp->next = r_sp;
r_sp = tmp;
break;
}
}
switch (range.type & ResExtMask) {
case ResBlock:
ret = x_isSubsetOf(range,r,r_sp);
break;
case ResSparse:
ret = x_isSubsetOf(range,r_sp,r);
break;
}
xf86FreeResList(r);
xf86FreeResList(r_sp);
return ret;
}
static resPtr
findIntersect(resRange Range, resPtr list)
{
resRange range;
resPtr new = NULL;
while (list) {
if ((Range.type & ResTypeMask) == (list->res_type & ResTypeMask)) {
switch (Range.type & ResExtMask) {
case ResBlock:
switch (list->res_type & ResExtMask) {
case ResBlock:
if (Range.rBegin >= list->block_begin)
range.rBegin = Range.rBegin;
else
range.rBegin = list->block_begin;
if (Range.rEnd <= list->block_end)
range.rEnd = Range.rEnd;
else
range.rEnd = list->block_end;
if (range.rEnd > range.rBegin) {
range.type = Range.type;
new = xf86AddResToList(new,&range,-1);
}
break;
case ResSparse:
new = xf86JoinResLists(new,xf86FindIntersectOfLists(new,decomposeSparse(list->val)));
break;
}
break;
case ResSparse:
switch (list->res_type & ResExtMask) {
case ResSparse:
if (!((~(range.rBase ^ list->sparse_base)
& (range.rMask & list->sparse_mask)))) {
RANGE(range, (range.rBase & list->sparse_base)
| (~range.rMask & list->sparse_base)
| (~list->sparse_mask & range.rBase),
range.rMask | list->sparse_mask,
Range.type);
new = xf86AddResToList(new,&range,-1);
}
break;
case ResBlock:
new = xf86JoinResLists(new,xf86FindIntersectOfLists(
decomposeSparse(range),list));
break;
}
}
}
list = list->next;
}
return new;
}
resPtr
xf86FindIntersectOfLists(resPtr l1, resPtr l2)
{
resPtr ret = NULL;
while (l1) {
ret = xf86JoinResLists(ret,findIntersect(l1->val,l2));
l1 = l1->next;
}
return ret;
}
#if 0 /* Not used */
static resPtr
xf86FindComplement(resRange Range)
{
resRange range;
memType tmp;
resPtr new = NULL;
int i;
switch (Range.type & ResExtMask) {
case ResBlock:
if (Range.rBegin > 0) {
RANGE(range, 0, Range.rBegin - 1, Range.type);
new = xf86AddResToList(new,&range,-1);
}
if (Range.rEnd < (memType)~0) {
RANGE(range,Range.rEnd + 1, (memType)~0, Range.type);
new = xf86AddResToList(new,&range,-1);
}
break;
case ResSparse:
tmp = Range.rMask;
for (i = 0; i < sizeof(memType); i++) {
if (tmp & 0x1) {
RANGE(range,(~Range.rMask & range.rMask),(1 << i), Range.type);
new = xf86AddResToList(new,&range,-1);
}
}
break;
default:
break;
}
return new;
}
#endif
resPtr
xf86ExtractTypeFromList(resPtr list, unsigned long type)
{
resPtr ret = NULL;
while (list) {
if ((list->res_type & ResTypeMask) == type)
ret = xf86AddResToList(ret,&(list->val),list->entityIndex);
list = list->next;
}
return ret;
}
/*------------------------------------------------------------*/
static void CheckGenericGA(void);
/*
* xf86FindPrimaryDevice() - Find the display device which
* was active when the server was started.
*/
void
xf86FindPrimaryDevice()
{
/* if no VGA device is found check for primary PCI device */
if (primaryBus.type == BUS_NONE && xorgHWAccess)
CheckGenericGA();
if (primaryBus.type != BUS_NONE) {
char *bus;
char *loc = xnfcalloc(1,9);
if (loc == NULL) return;
switch (primaryBus.type) {
case BUS_PCI:
bus = "PCI";
sprintf(loc," %2.2x:%2.2x:%1.1x",primaryBus.id.pci.bus,
primaryBus.id.pci.device,primaryBus.id.pci.func);
break;
case BUS_ISA:
bus = "ISA";
loc[0] = '\0';
break;
case BUS_SBUS:
bus = "SBUS";
sprintf(loc," %2.2x",primaryBus.id.sbus.fbNum);
break;
default:
bus = "";
loc[0] = '\0';
}
xf86MsgVerb(X_INFO, 2, "Primary Device is: %s%s\n",bus,loc);
xfree(loc);
}
}
#if !defined(__sparc) && !defined(__sparc__) && !defined(__powerpc__) && !defined(__mips__) && !defined(__arm__)
#include "vgaHW.h"
#include "compiler.h"
#endif
/*
* CheckGenericGA() - Check for presence of a VGA device.
*/
static void
CheckGenericGA()
{
/* This needs to be changed for multiple domains */
#if !defined(__sparc__) && !defined(__sparc) && !defined(__powerpc__) && !defined(__mips__) && !defined(__ia64__) && !defined(__arm__) && !defined(__s390__)
IOADDRESS GenericIOBase = VGAHW_GET_IOBASE();
CARD8 CurrentValue, TestValue;
/* VGA CRTC registers are not used here, so don't bother unlocking them */
/* VGA has one more read/write attribute register than EGA */
(void) inb(GenericIOBase + VGA_IN_STAT_1_OFFSET); /* Reset flip-flop */
outb(VGA_ATTR_INDEX, 0x14 | 0x20);
CurrentValue = inb(VGA_ATTR_DATA_R);
outb(VGA_ATTR_DATA_W, CurrentValue ^ 0x0F);
outb(VGA_ATTR_INDEX, 0x14 | 0x20);
TestValue = inb(VGA_ATTR_DATA_R);
outb(VGA_ATTR_DATA_W, CurrentValue);
if ((CurrentValue ^ 0x0F) == TestValue) {
primaryBus.type = BUS_ISA;
}
#endif
}
_X_EXPORT Bool
xf86NoSharedResources(int screenIndex,resType res)
{
int j;
if (screenIndex > xf86NumScreens)
return TRUE;
for (j = 0; j < xf86Screens[screenIndex]->numEntities; j++) {
switch (res) {
case IO:
if ( xf86Entities[xf86Screens[screenIndex]->entityList[j]]->entityProp
& NEED_IO_SHARED)
return FALSE;
break;
case MEM:
if ( xf86Entities[xf86Screens[screenIndex]->entityList[j]]->entityProp
& NEED_MEM_SHARED)
return FALSE;
break;
case MEM_IO:
if ( xf86Entities[xf86Screens[screenIndex]->entityList[j]]->entityProp
& NEED_SHARED)
return FALSE;
break;
case NONE:
break;
}
}
return TRUE;
}
_X_EXPORT void
xf86RegisterStateChangeNotificationCallback(xf86StateChangeNotificationCallbackFunc func, pointer arg)
{
StateChangeNotificationPtr ptr =
(StateChangeNotificationPtr)xnfalloc(sizeof(StateChangeNotificationRec));
ptr->func = func;
ptr->arg = arg;
ptr->next = StateChangeNotificationList;
StateChangeNotificationList = ptr;
}
_X_EXPORT Bool
xf86DeregisterStateChangeNotificationCallback(xf86StateChangeNotificationCallbackFunc func)
{
StateChangeNotificationPtr *ptr = &StateChangeNotificationList;
StateChangeNotificationPtr tmp;
while (*ptr) {
if ((*ptr)->func == func) {
tmp = (*ptr);
(*ptr) = (*ptr)->next;
xfree(tmp);
return TRUE;
}
ptr = &((*ptr)->next);
}
return FALSE;
}
static void
notifyStateChange(xf86NotifyState state)
{
StateChangeNotificationPtr ptr = StateChangeNotificationList;
while (ptr) {
ptr->func(state,ptr->arg);
ptr = ptr->next;
}
}
/* Multihead accel sharing accessor functions and entity Private handling */
_X_EXPORT int
xf86GetLastScrnFlag(int entityIndex)
{
if(entityIndex < xf86NumEntities) {
return(xf86Entities[entityIndex]->lastScrnFlag);
} else {
return -1;
}
}
_X_EXPORT void
xf86SetLastScrnFlag(int entityIndex, int scrnIndex)
{
if(entityIndex < xf86NumEntities) {
xf86Entities[entityIndex]->lastScrnFlag = scrnIndex;
}
}
_X_EXPORT Bool
xf86IsEntityShared(int entityIndex)
{
if(entityIndex < xf86NumEntities) {
if(xf86Entities[entityIndex]->entityProp & IS_SHARED_ACCEL) {
return TRUE;
}
}
return FALSE;
}
_X_EXPORT void
xf86SetEntityShared(int entityIndex)
{
if(entityIndex < xf86NumEntities) {
xf86Entities[entityIndex]->entityProp |= IS_SHARED_ACCEL;
}
}
_X_EXPORT Bool
xf86IsEntitySharable(int entityIndex)
{
if(entityIndex < xf86NumEntities) {
if(xf86Entities[entityIndex]->entityProp & ACCEL_IS_SHARABLE) {
return TRUE;
}
}
return FALSE;
}
_X_EXPORT void
xf86SetEntitySharable(int entityIndex)
{
if(entityIndex < xf86NumEntities) {
xf86Entities[entityIndex]->entityProp |= ACCEL_IS_SHARABLE;
}
}
_X_EXPORT Bool
xf86IsPrimInitDone(int entityIndex)
{
if(entityIndex < xf86NumEntities) {
if(xf86Entities[entityIndex]->entityProp & SA_PRIM_INIT_DONE) {
return TRUE;
}
}
return FALSE;
}
_X_EXPORT void
xf86SetPrimInitDone(int entityIndex)
{
if(entityIndex < xf86NumEntities) {
xf86Entities[entityIndex]->entityProp |= SA_PRIM_INIT_DONE;
}
}
_X_EXPORT void
xf86ClearPrimInitDone(int entityIndex)
{
if(entityIndex < xf86NumEntities) {
xf86Entities[entityIndex]->entityProp &= ~SA_PRIM_INIT_DONE;
}
}
/*
* Allocate a private in the entities.
*/
_X_EXPORT int
xf86AllocateEntityPrivateIndex(void)
{
int idx, i;
EntityPtr pEnt;
DevUnion *nprivs;
idx = xf86EntityPrivateCount++;
for (i = 0; i < xf86NumEntities; i++) {
pEnt = xf86Entities[i];
nprivs = xnfrealloc(pEnt->entityPrivates,
xf86EntityPrivateCount * sizeof(DevUnion));
/* Zero the new private */
bzero(&nprivs[idx], sizeof(DevUnion));
pEnt->entityPrivates = nprivs;
}
return idx;
}
_X_EXPORT DevUnion *
xf86GetEntityPrivate(int entityIndex, int privIndex)
{
if (entityIndex >= xf86NumEntities || privIndex >= xf86EntityPrivateCount)
return NULL;
return &(xf86Entities[entityIndex]->entityPrivates[privIndex]);
}
|