#ifndef PACKAGE
# error config.h must be included before pixman-private.h
#endif
#ifndef PIXMAN_PRIVATE_H
#define PIXMAN_PRIVATE_H
#include "pixman.h"
#include <time.h>
#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE 1
#endif
#define MSBFirst 0
#define LSBFirst 1
#ifdef WORDS_BIGENDIAN
# define IMAGE_BYTE_ORDER MSBFirst
# define BITMAP_BIT_ORDER MSBFirst
#else
# define IMAGE_BYTE_ORDER LSBFirst
# define BITMAP_BIT_ORDER LSBFirst
#endif
#define DEBUG 0
#if defined (__GNUC__)
# define FUNC ((const char*) (__PRETTY_FUNCTION__))
#elif defined (__sun) || (defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L)
# define FUNC ((const char*) (__func__))
#else
# define FUNC ((const char*) ("???"))
#endif
#ifndef INT16_MIN
# define INT16_MIN (-32767-1)
# define INT16_MAX (32767)
#endif
#ifndef INT32_MIN
# define INT32_MIN (-2147483647-1)
# define INT32_MAX (2147483647)
#endif
#ifndef UINT32_MIN
# define UINT32_MIN (0)
# define UINT32_MAX (4294967295U)
#endif
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
#ifdef _MSC_VER
#define inline __inline
#endif
#define FB_SHIFT 5
#define FB_UNIT (1 << FB_SHIFT)
#define FB_HALFUNIT (1 << (FB_SHIFT-1))
#define FB_MASK (FB_UNIT - 1)
#define FB_ALLONES ((uint32_t) -1)
/* Memory allocation helpers */
void *pixman_malloc_ab (unsigned int n, unsigned int b);
void *pixman_malloc_abc (unsigned int a, unsigned int b, unsigned int c);
pixman_bool_t pixman_multiply_overflows_int (unsigned int a, unsigned int b);
pixman_bool_t pixman_addition_overflows_int (unsigned int a, unsigned int b);
#if DEBUG
#define return_if_fail(expr) \
do \
{ \
if (!(expr)) \
{ \
fprintf(stderr, "In %s: %s failed\n", FUNC, #expr); \
return; \
} \
} \
while (0)
#define return_val_if_fail(expr, retval) \
do \
{ \
if (!(expr)) \
{ \
fprintf(stderr, "In %s: %s failed\n", FUNC, #expr); \
return (retval); \
} \
} \
while (0)
#else
#define return_if_fail(expr) \
do \
{ \
if (!(expr)) \
return; \
} \
while (0)
#define return_val_if_fail(expr, retval) \
do \
{ \
if (!(expr)) \
return (retval); \
} \
while (0)
#endif
typedef struct image_common image_common_t;
typedef struct source_image source_image_t;
typedef struct solid_fill solid_fill_t;
typedef struct gradient gradient_t;
typedef struct linear_gradient linear_gradient_t;
typedef struct horizontal_gradient horizontal_gradient_t;
typedef struct vertical_gradient vertical_gradient_t;
typedef struct conical_gradient conical_gradient_t;
typedef struct radial_gradient radial_gradient_t;
typedef struct bits_image bits_image_t;
typedef struct circle circle_t;
typedef struct point point_t;
/* FIXME - the types and structures below should be give proper names
*/
#define FASTCALL
typedef FASTCALL void (*CombineMaskU) (uint32_t *src, const uint32_t *mask, int width);
typedef FASTCALL void (*CombineFuncU) (uint32_t *dest, const uint32_t *src, int width);
typedef FASTCALL void (*CombineFuncC) (uint32_t *dest, uint32_t *src, uint32_t *mask, int width);
typedef struct _FbComposeData {
uint8_t op;
pixman_image_t *src;
pixman_image_t *mask;
pixman_image_t *dest;
int16_t xSrc;
int16_t ySrc;
int16_t xMask;
int16_t yMask;
int16_t xDest;
int16_t yDest;
uint16_t width;
uint16_t height;
} FbComposeData;
typedef struct _FbComposeFunctions {
CombineFuncU *combineU;
CombineFuncC *combineC;
CombineMaskU combineMaskU;
} FbComposeFunctions;
extern FbComposeFunctions pixman_composeFunctions;
void pixman_composite_rect_general_accessors (const FbComposeData *data,
uint32_t *scanline_buffer);
void pixman_composite_rect_general (const FbComposeData *data,
uint32_t *scanline_buffer);
/* end */
typedef enum
{
BITS,
LINEAR,
CONICAL,
RADIAL,
SOLID
} image_type_t;
#define IS_SOURCE_IMAGE(img) (((image_common_t *)img)->type > BITS)
typedef enum
{
SOURCE_IMAGE_CLASS_UNKNOWN,
SOURCE_IMAGE_CLASS_HORIZONTAL,
SOURCE_IMAGE_CLASS_VERTICAL
} source_pict_class_t;
struct point
{
int16_t x, y;
};
struct image_common
{
image_type_t type;
int32_t ref_count;
pixman_region16_t full_region;
pixman_region16_t clip_region;
pixman_region16_t *src_clip;
pixman_bool_t has_client_clip;
pixman_transform_t *transform;
pixman_repeat_t repeat;
pixman_filter_t filter;
pixman_fixed_t *filter_params;
int n_filter_params;
bits_image_t *alpha_map;
point_t alpha_origin;
pixman_bool_t component_alpha;
pixman_read_memory_func_t read_func;
pixman_write_memory_func_t write_func;
};
struct source_image
{
image_common_t common;
source_pict_class_t class;
};
struct solid_fill
{
source_image_t common;
uint32_t color; /* FIXME: shouldn't this be a pixman_color_t? */
};
struct gradient
{
source_image_t common;
int n_stops;
pixman_gradient_stop_t * stops;
int stop_range;
uint32_t * color_table;
int color_table_size;
};
struct linear_gradient
{
gradient_t common;
pixman_point_fixed_t p1;
pixman_point_fixed_t p2;
};
struct circle
{
pixman_fixed_t x;
pixman_fixed_t y;
pixman_fixed_t radius;
};
struct radial_gradient
{
gradient_t common;
circle_t c1;
circle_t c2;
double cdx;
double cdy;
double dr;
double A;
};
struct conical_gradient
{
gradient_t common;
pixman_point_fixed_t center;
pixman_fixed_t angle;
};
struct bits_image
{
image_common_t common;
pixman_format_code_t format;
const pixman_indexed_t *indexed;
int width;
int height;
uint32_t * bits;
uint32_t * free_me;
int rowstride; /* in number of uint32_t's */
};
union pixman_image
{
image_type_t type;
image_common_t common;
bits_image_t bits;
gradient_t gradient;
linear_gradient_t linear;
conical_gradient_t conical;
radial_gradient_t radial;
solid_fill_t solid;
};
#define LOG2_BITMAP_PAD 5
#define FB_STIP_SHIFT LOG2_BITMAP_PAD
#define FB_STIP_UNIT (1 << FB_STIP_SHIFT)
#define FB_STIP_MASK (FB_STIP_UNIT - 1)
#define FB_STIP_ALLONES ((uint32_t) -1)
#if BITMAP_BIT_ORDER == LSBFirst
#define FbScrLeft(x,n) ((x) >> (n))
#define FbScrRight(x,n) ((x) << (n))
#define FbLeftStipBits(x,n) ((x) & ((((uint32_t) 1) << (n)) - 1))
#else
#define FbScrLeft(x,n) ((x) << (n))
#define FbScrRight(x,n) ((x) >> (n))
#define FbLeftStipBits(x,n) ((x) >> (FB_STIP_UNIT - (n)))
#endif
#define FbStipLeft(x,n) FbScrLeft(x,n)
#define FbStipRight(x,n) FbScrRight(x,n)
#define FbStipMask(x,w) (FbStipRight(FB_STIP_ALLONES,(x) & FB_STIP_MASK) & \
FbStipLeft(FB_STIP_ALLONES,(FB_STIP_UNIT - ((x)+(w))) & FB_STIP_MASK))
#define FbLeftMask(x) ( ((x) & FB_MASK) ? \
FbScrRight(FB_ALLONES,(x) & FB_MASK) : 0)
#define FbRightMask(x) ( ((FB_UNIT - (x)) & FB_MASK) ? \
FbScrLeft(FB_ALLONES,(FB_UNIT - (x)) & FB_MASK) : 0)
#define FbMaskBits(x,w,l,n,r) { \
n = (w); \
r = FbRightMask((x)+n); \
l = FbLeftMask(x); \
if (l) { \
n -= FB_UNIT - ((x) & FB_MASK); \
if (n < 0) { \
n = 0; \
l &= r; \
r = 0; \
} \
} \
n >>= FB_SHIFT; \
}
#if IMAGE_BYTE_ORDER == MSBFirst
#define Fetch24(img, a) ((unsigned long) (a) & 1 ? \
((READ(img, a) << 16) | READ(img, (uint16_t *) ((a)+1))) : \
((READ(img, (uint16_t *) (a)) << 8) | READ(img, (a)+2)))
#define Store24(img,a,v) ((unsigned long) (a) & 1 ? \
(WRITE(img, a, (uint8_t) ((v) >> 16)), \
WRITE(img, (uint16_t *) ((a)+1), (uint16_t) (v))) : \
(WRITE(img, (uint16_t *) (a), (uint16_t) ((v) >> 8)), \
WRITE(img, (a)+2, (uint8_t) (v))))
#else
#define Fetch24(img,a) ((unsigned long) (a) & 1 ? \
(READ(img, a) | (READ(img, (uint16_t *) ((a)+1)) << 8)) : \
(READ(img, (uint16_t *) (a)) | (READ(img, (a)+2) << 16)))
#define Store24(img,a,v) ((unsigned long) (a) & 1 ? \
(WRITE(img, a, (uint8_t) (v)), \
WRITE(img, (uint16_t *) ((a)+1), (uint16_t) ((v) >> 8))) : \
(WRITE(img, (uint16_t *) (a), (uint16_t) (v)), \
WRITE(img, (a)+2, (uint8_t) ((v) >> 16))))
#endif
#define Alpha(x) ((x) >> 24)
#define Red(x) (((x) >> 16) & 0xff)
#define Green(x) (((x) >> 8) & 0xff)
#define Blue(x) ((x) & 0xff)
#define CvtR8G8B8toY15(s) (((((s) >> 16) & 0xff) * 153 + \
(((s) >> 8) & 0xff) * 301 + \
(((s) ) & 0xff) * 58) >> 2)
#define miCvtR8G8B8to15(s) ((((s) >> 3) & 0x001f) | \
(((s) >> 6) & 0x03e0) | \
(((s) >> 9) & 0x7c00))
#define miIndexToEnt15(mif,rgb15) ((mif)->ent[rgb15])
#define miIndexToEnt24(mif,rgb24) miIndexToEnt15(mif,miCvtR8G8B8to15(rgb24))
#define miIndexToEntY24(mif,rgb24) ((mif)->ent[CvtR8G8B8toY15(rgb24)])
#define FbIntMult(a,b,t) ( (t) = (a) * (b) + 0x80, ( ( ( (t)>>8 ) + (t) )>>8 ) )
#define FbIntDiv(a,b) (((uint16_t) (a) * 255) / (b))
#define FbGet8(v,i) ((uint16_t) (uint8_t) ((v) >> i))
#define cvt8888to0565(s) ((((s) >> 3) & 0x001f) | \
(((s) >> 5) & 0x07e0) | \
(((s) >> 8) & 0xf800))
#define cvt0565to0888(s) (((((s) << 3) & 0xf8) | (((s) >> 2) & 0x7)) | \
((((s) << 5) & 0xfc00) | (((s) >> 1) & 0x300)) | \
((((s) << 8) & 0xf80000) | (((s) << 3) & 0x70000)))
/*
* There are two ways of handling alpha -- either as a single unified value or
* a separate value for each component, hence each macro must have two
* versions. The unified alpha version has a 'U' at the end of the name,
* the component version has a 'C'. Similarly, functions which deal with
* this difference will have two versions using the same convention.
*/
#define FbOverU(x,y,i,a,t) ((t) = FbIntMult(FbGet8(y,i),(a),(t)) + FbGet8(x,i), \
(uint32_t) ((uint8_t) ((t) | (0 - ((t) >> 8)))) << (i))
#define FbOverC(x,y,i,a,t) ((t) = FbIntMult(FbGet8(y,i),FbGet8(a,i),(t)) + FbGet8(x,i), \
(uint32_t) ((uint8_t) ((t) | (0 - ((t) >> 8)))) << (i))
#define FbInU(x,i,a,t) ((uint32_t) FbIntMult(FbGet8(x,i),(a),(t)) << (i))
#define FbInC(x,i,a,t) ((uint32_t) FbIntMult(FbGet8(x,i),FbGet8(a,i),(t)) << (i))
#define FbGen(x,y,i,ax,ay,t,u,v) ((t) = (FbIntMult(FbGet8(y,i),ay,(u)) + \
FbIntMult(FbGet8(x,i),ax,(v))), \
(uint32_t) ((uint8_t) ((t) | \
(0 - ((t) >> 8)))) << (i))
#define FbAdd(x,y,i,t) ((t) = FbGet8(x,i) + FbGet8(y,i), \
(uint32_t) ((uint8_t) ((t) | (0 - ((t) >> 8)))) << (i))
/*
The methods below use some tricks to be able to do two color
components at the same time.
*/
/*
x_c = (x_c * a) / 255
*/
#define FbByteMul(x, a) do { \
uint32_t t = ((x & 0xff00ff) * a) + 0x800080; \
t = (t + ((t >> 8) & 0xff00ff)) >> 8; \
t &= 0xff00ff; \
\
x = (((x >> 8) & 0xff00ff) * a) + 0x800080; \
x = (x + ((x >> 8) & 0xff00ff)); \
x &= 0xff00ff00; \
x += t; \
} while (0)
/*
x_c = (x_c * a) / 255 + y
*/
#define FbByteMulAdd(x, a, y) do { \
uint32_t t = ((x & 0xff00ff) * a) + 0x800080; \
t = (t + ((t >> 8) & 0xff00ff)) >> 8; \
t &= 0xff00ff; \
t += y & 0xff00ff; \
t |= 0x1000100 - ((t >> 8) & 0xff00ff); \
t &= 0xff00ff; \
\
x = (((x >> 8) & 0xff00ff) * a) + 0x800080; \
x = (x + ((x >> 8) & 0xff00ff)) >> 8; \
x &= 0xff00ff; \
x += (y >> 8) & 0xff00ff; \
x |= 0x1000100 - ((x >> 8) & 0xff00ff); \
x &= 0xff00ff; \
x <<= 8; \
x += t; \
} while (0)
/*
x_c = (x_c * a + y_c * b) / 255
*/
#define FbByteAddMul(x, a, y, b) do { \
uint32_t t; \
uint32_t r = (x >> 24) * a + (y >> 24) * b + 0x80; \
r += (r >> 8); \
r >>= 8; \
\
t = (x & 0xff00) * a + (y & 0xff00) * b; \
t += (t >> 8) + 0x8000; \
t >>= 16; \
\
t |= r << 16; \
t |= 0x1000100 - ((t >> 8) & 0xff00ff); \
t &= 0xff00ff; \
t <<= 8; \
\
r = ((x >> 16) & 0xff) * a + ((y >> 16) & 0xff) * b + 0x80; \
r += (r >> 8); \
r >>= 8; \
\
x = (x & 0xff) * a + (y & 0xff) * b + 0x80; \
x += (x >> 8); \
x >>= 8; \
x |= r << 16; \
x |= 0x1000100 - ((x >> 8) & 0xff00ff); \
x &= 0xff00ff; \
x |= t; \
} while (0)
/*
x_c = (x_c * a + y_c *b) / 256
*/
#define FbByteAddMul_256(x, a, y, b) do { \
uint32_t t = (x & 0xff00ff) * a + (y & 0xff00ff) * b; \
t >>= 8; \
t &= 0xff00ff; \
\
x = ((x >> 8) & 0xff00ff) * a + ((y >> 8) & 0xff00ff) * b; \
x &= 0xff00ff00; \
x += t; \
} while (0)
/*
x_c = (x_c * a_c) / 255
*/
#define FbByteMulC(x, a) do { \
uint32_t t; \
uint32_t r = (x & 0xff) * (a & 0xff); \
r |= (x & 0xff0000) * ((a >> 16) & 0xff); \
r += 0x800080; \
r = (r + ((r >> 8) & 0xff00ff)) >> 8; \
r &= 0xff00ff; \
\
x >>= 8; \
t = (x & 0xff) * ((a >> 8) & 0xff); \
t |= (x & 0xff0000) * (a >> 24); \
t += 0x800080; \
t = t + ((t >> 8) & 0xff00ff); \
x = r | (t & 0xff00ff00); \
\
} while (0)
/*
x_c = (x_c * a) / 255 + y
*/
#define FbByteMulAddC(x, a, y) do { \
uint32_t t; \
uint32_t r = (x & 0xff) * (a & 0xff); \
r |= (x & 0xff0000) * ((a >> 16) & 0xff); \
r += 0x800080; \
r = (r + ((r >> 8) & 0xff00ff)) >> 8; \
r &= 0xff00ff; \
r += y & 0xff00ff; \
r |= 0x1000100 - ((r >> 8) & 0xff00ff); \
r &= 0xff00ff; \
\
x >>= 8; \
t = (x & 0xff) * ((a >> 8) & 0xff); \
t |= (x & 0xff0000) * (a >> 24); \
t += 0x800080; \
t = (t + ((t >> 8) & 0xff00ff)) >> 8; \
t &= 0xff00ff; \
t += (y >> 8) & 0xff00ff; \
t |= 0x1000100 - ((t >> 8) & 0xff00ff); \
t &= 0xff00ff; \
x = r | (t << 8); \
} while (0)
/*
x_c = (x_c * a_c + y_c * b) / 255
*/
#define FbByteAddMulC(x, a, y, b) do { \
uint32_t t; \
uint32_t r = (x >> 24) * (a >> 24) + (y >> 24) * b; \
r += (r >> 8) + 0x80; \
r >>= 8; \
\
t = (x & 0xff00) * ((a >> 8) & 0xff) + (y & 0xff00) * b; \
t += (t >> 8) + 0x8000; \
t >>= 16; \
\
t |= r << 16; \
t |= 0x1000100 - ((t >> 8) & 0xff00ff); \
t &= 0xff00ff; \
t <<= 8; \
\
r = ((x >> 16) & 0xff) * ((a >> 16) & 0xff) + ((y >> 16) & 0xff) * b + 0x80; \
r += (r >> 8); \
r >>= 8; \
\
x = (x & 0xff) * (a & 0xff) + (y & 0xff) * b + 0x80; \
x += (x >> 8); \
x >>= 8; \
x |= r << 16; \
x |= 0x1000100 - ((x >> 8) & 0xff00ff); \
x &= 0xff00ff; \
x |= t; \
} while (0)
/*
x_c = min(x_c + y_c, 255)
*/
#define FbByteAdd(x, y) do { \
uint32_t t; \
uint32_t r = (x & 0xff00ff) + (y & 0xff00ff); \
r |= 0x1000100 - ((r >> 8) & 0xff00ff); \
r &= 0xff00ff; \
\
t = ((x >> 8) & 0xff00ff) + ((y >> 8) & 0xff00ff); \
t |= 0x1000100 - ((t >> 8) & 0xff00ff); \
r |= (t & 0xff00ff) << 8; \
x = r; \
} while (0)
#define div_255(x) (((x) + 0x80 + (((x) + 0x80) >> 8)) >> 8)
#define MOD(a,b) ((a) < 0 ? ((b) - ((-(a) - 1) % (b))) - 1 : (a) % (b))
#define DIV(a,b) ((((a) < 0) == ((b) < 0)) ? (a) / (b) : \
((a) - (b) + 1 - (((b) < 0) << 1)) / (b))
#if 0
/* FIXME: the MOD macro above is equivalent, but faster I think */
#define mod(a,b) ((b) == 1 ? 0 : (a) >= 0 ? (a) % (b) : (b) - (-a) % (b))
#endif
/* FIXME: the (void)__read_func hides lots of warnings (which is what they
* are supposed to do), but some of them are real. For example the one
* where Fetch4 doesn't have a READ
*/
#if 0
/* Framebuffer access support macros */
#define ACCESS_MEM(code) \
do { \
const image_common_t *const com__ = \
(image_common_t *)image; \
\
if (!com__->read_func && !com__->write_func) \
{ \
const int do_access__ = 0; \
const pixman_read_memory_func_t read_func__ = NULL; \
const pixman_write_memory_func_t write_func__ = NULL; \
(void)read_func__; \
(void)write_func__; \
(void)do_access__; \
\
{code} \
} \
else \
{ \
const int do_access__ = 1; \
const pixman_read_memory_func_t read_func__ = \
com__->read_func; \
const pixman_write_memory_func_t write_func__ = \
com__->write_func; \
(void)read_func__; \
(void)write_func__; \
(void)do_access__; \
\
{code} \
} \
} while (0)
#endif
#ifdef PIXMAN_FB_ACCESSORS
#define READ(img, ptr) \
((img)->common.read_func ((ptr), sizeof(*(ptr))))
#define WRITE(img, ptr,val) \
((img)->common.write_func ((ptr), (val), sizeof (*(ptr))))
#define MEMCPY_WRAPPED(img, dst, src, size) \
do { \
size_t _i; \
uint8_t *_dst = (uint8_t*)(dst), *_src = (uint8_t*)(src); \
for(_i = 0; _i < size; _i++) { \
WRITE((img), _dst +_i, READ((img), _src + _i)); \
} \
} while (0)
#define MEMSET_WRAPPED(img, dst, val, size) \
do { \
size_t _i; \
uint8_t *_dst = (uint8_t*)(dst); \
for(_i = 0; _i < (size_t) size; _i++) { \
WRITE((img), _dst +_i, (val)); \
} \
} while (0)
/* FIXME */
#define fbPrepareAccess(x)
#define fbFinishAccess(x)
#else
#define READ(img, ptr) (*(ptr))
#define WRITE(img, ptr, val) (*(ptr) = (val))
#define MEMCPY_WRAPPED(img, dst, src, size) \
memcpy(dst, src, size)
#define MEMSET_WRAPPED(img, dst, val, size) \
memset(dst, val, size)
#define fbPrepareAccess(x)
#define fbFinishAccess(x)
#endif
#define fbComposeGetSolid(img, res, fmt) \
do \
{ \
pixman_format_code_t format__; \
if (img->type == SOLID) \
{ \
format__ = PIXMAN_a8r8g8b8; \
(res) = img->solid.color; \
} \
else \
{ \
uint32_t *bits__ = (img)->bits.bits; \
format__ = (img)->bits.format; \
\
switch (PIXMAN_FORMAT_BPP((img)->bits.format)) \
{ \
case 32: \
(res) = READ(img, (uint32_t *)bits__); \
break; \
case 24: \
(res) = Fetch24(img, (uint8_t *) bits__); \
break; \
case 16: \
(res) = READ(img, (uint16_t *) bits__); \
(res) = cvt0565to0888(res); \
break; \
case 8: \
(res) = READ(img, (uint8_t *) bits__); \
(res) = (res) << 24; \
break; \
case 1: \
(res) = READ(img, (uint32_t *) bits__); \
(res) = FbLeftStipBits((res),1) ? 0xff000000 : 0x00000000; \
break; \
default: \
return; \
} \
/* manage missing src alpha */ \
if (!PIXMAN_FORMAT_A((img)->bits.format)) \
(res) |= 0xff000000; \
} \
\
/* If necessary, convert RGB <--> BGR. */ \
if (PIXMAN_FORMAT_TYPE (format__) != PIXMAN_FORMAT_TYPE(fmt)) \
{ \
(res) = ((((res) & 0xff000000) >> 0) | \
(((res) & 0x00ff0000) >> 16) | \
(((res) & 0x0000ff00) >> 0) | \
(((res) & 0x000000ff) << 16)); \
} \
} \
while (0)
#define fbComposeGetStart(pict,x,y,type,out_stride,line,mul) do { \
uint32_t *__bits__; \
int __stride__; \
int __bpp__; \
\
__bits__ = pict->bits.bits; \
__stride__ = pict->bits.rowstride; \
__bpp__ = PIXMAN_FORMAT_BPP(pict->bits.format); \
(out_stride) = __stride__ * (int) sizeof (uint32_t) / (int) sizeof (type); \
(line) = ((type *) __bits__) + \
(out_stride) * (y) + (mul) * (x); \
} while (0)
/*
* Edges
*/
#define MAX_ALPHA(n) ((1 << (n)) - 1)
#define N_Y_FRAC(n) ((n) == 1 ? 1 : (1 << ((n)/2)) - 1)
#define N_X_FRAC(n) ((1 << ((n)/2)) + 1)
#define STEP_Y_SMALL(n) (pixman_fixed_1 / N_Y_FRAC(n))
#define STEP_Y_BIG(n) (pixman_fixed_1 - (N_Y_FRAC(n) - 1) * STEP_Y_SMALL(n))
#define Y_FRAC_FIRST(n) (STEP_Y_SMALL(n) / 2)
#define Y_FRAC_LAST(n) (Y_FRAC_FIRST(n) + (N_Y_FRAC(n) - 1) * STEP_Y_SMALL(n))
#define STEP_X_SMALL(n) (pixman_fixed_1 / N_X_FRAC(n))
#define STEP_X_BIG(n) (pixman_fixed_1 - (N_X_FRAC(n) - 1) * STEP_X_SMALL(n))
#define X_FRAC_FIRST(n) (STEP_X_SMALL(n) / 2)
#define X_FRAC_LAST(n) (X_FRAC_FIRST(n) + (N_X_FRAC(n) - 1) * STEP_X_SMALL(n))
#define RenderSamplesX(x,n) ((n) == 1 ? 0 : (pixman_fixed_frac (x) + X_FRAC_FIRST(n)) / STEP_X_SMALL(n))
/*
* Step across a small sample grid gap
*/
#define RenderEdgeStepSmall(edge) { \
edge->x += edge->stepx_small; \
edge->e += edge->dx_small; \
if (edge->e > 0) \
{ \
edge->e -= edge->dy; \
edge->x += edge->signdx; \
} \
}
/*
* Step across a large sample grid gap
*/
#define RenderEdgeStepBig(edge) { \
edge->x += edge->stepx_big; \
edge->e += edge->dx_big; \
if (edge->e > 0) \
{ \
edge->e -= edge->dy; \
edge->x += edge->signdx; \
} \
}
void
pixman_rasterize_edges_accessors (pixman_image_t *image,
pixman_edge_t *l,
pixman_edge_t *r,
pixman_fixed_t t,
pixman_fixed_t b);
#ifdef PIXMAN_TIMING
/* Timing */
static inline uint64_t
oil_profile_stamp_rdtsc (void)
{
uint64_t ts;
__asm__ __volatile__("rdtsc\n" : "=A" (ts));
return ts;
}
#define OIL_STAMP oil_profile_stamp_rdtsc
typedef struct PixmanTimer PixmanTimer;
struct PixmanTimer
{
int initialized;
const char *name;
uint64_t n_times;
uint64_t total;
PixmanTimer *next;
};
extern int timer_defined;
void pixman_timer_register (PixmanTimer *timer);
#define TIMER_BEGIN(tname) \
{ \
static PixmanTimer timer##tname; \
uint64_t begin##tname; \
\
if (!timer##tname.initialized) \
{ \
timer##tname.initialized = 1; \
timer##tname.name = #tname; \
pixman_timer_register (&timer##tname); \
} \
\
timer##tname.n_times++; \
begin##tname = OIL_STAMP();
#define TIMER_END(tname) \
timer##tname.total += OIL_STAMP() - begin##tname; \
}
#endif /* PIXMAN_TIMING */
#endif /* PIXMAN_PRIVATE_H */
|