#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <[email protected]> for the OpenSSL
# project. Rights for redistribution and usage in source and binary
# forms are granted according to the OpenSSL license.
# ====================================================================
#
# SHA512_Transform_SSE2.
#
# As the name suggests, this is an IA-32 SSE2 implementation of
# SHA512_Transform. Motivating factor for the undertaken effort was that
# SHA512 was observed to *consistently* perform *significantly* poorer
# than SHA256 [2x and slower is common] on 32-bit platforms. On 64-bit
# platforms on the other hand SHA512 tend to outperform SHA256 [~50%
# seem to be common improvement factor]. All this is perfectly natural,
# as SHA512 is a 64-bit algorithm. But isn't IA-32 SSE2 essentially
# a 64-bit instruction set? Is it rich enough to implement SHA512?
# If answer was "no," then you wouldn't have been reading this...
#
# Throughput performance in MBps (larger is better):
#
# 2.4GHz P4 1.4GHz AMD32 1.4GHz AMD64(*)
# SHA256/gcc(*) 54 43 59
# SHA512/gcc 17 23 92
# SHA512/sse2 61(**) 57(**)
# SHA512/icc 26 28
# SHA256/icc(*) 65 54
#
# (*) AMD64 and SHA256 numbers are presented mostly for amusement or
# reference purposes.
# (**) I.e. it gives ~2-3x speed-up if compared with compiler generated
# code. One can argue that hand-coded *non*-SSE2 implementation
# would perform better than compiler generated one as well, and
# that comparison is therefore not exactly fair. Well, as SHA512
# puts enormous pressure on IA-32 GP register bank, I reckon that
# hand-coded version wouldn't perform significantly better than
# one compiled with icc, ~20% perhaps... So that this code would
# still outperform it with distinguishing marginal. But feel free
# to prove me wrong:-)
# <[email protected]>
push(@INC,"perlasm","../../perlasm");
require "x86asm.pl";
&asm_init($ARGV[0],"sha512-sse2.pl",$ARGV[$#ARGV] eq "386");
$K512="esi"; # K512[80] table, found at the end...
#$W512="esp"; # $W512 is not just W512[16]: it comprises *two* copies
# of W512[16] and a copy of A-H variables...
$W512_SZ=8*(16+16+8); # see above...
#$Kidx="ebx"; # index in K512 table, advances from 0 to 80...
$Widx="edx"; # index in W512, wraps around at 16...
$data="edi"; # 16 qwords of input data...
$A="mm0"; # B-D and
$E="mm1"; # F-H are allocated dynamically...
$Aoff=256+0; # A-H offsets relative to $W512...
$Boff=256+8;
$Coff=256+16;
$Doff=256+24;
$Eoff=256+32;
$Foff=256+40;
$Goff=256+48;
$Hoff=256+56;
sub SHA2_ROUND()
{ local ($kidx,$widx)=@_;
# One can argue that one could reorder instructions for better
# performance. Well, I tried and it doesn't seem to make any
# noticeable difference. Modern out-of-order execution cores
# reorder instructions to their liking in either case and they
# apparently do decent job. So we can keep the code more
# readable/regular/comprehensible:-)
# I adhere to 64-bit %mmX registers in order to avoid/not care
# about #GP exceptions on misaligned 128-bit access, most
# notably in paddq with memory operand. Not to mention that
# SSE2 intructions operating on %mmX can be scheduled every
# cycle [and not every second one if operating on %xmmN].
&movq ("mm4",&QWP($Foff,$W512)); # load f
&movq ("mm5",&QWP($Goff,$W512)); # load g
&movq ("mm6",&QWP($Hoff,$W512)); # load h
&movq ("mm2",$E); # %mm2 is sliding right
&movq ("mm3",$E); # %mm3 is sliding left
&psrlq ("mm2",14);
&psllq ("mm3",23);
&movq ("mm7","mm2"); # %mm7 is T1
&pxor ("mm7","mm3");
&psrlq ("mm2",4);
&psllq ("mm3",23);
&pxor ("mm7","mm2");
&pxor ("mm7","mm3");
&psrlq ("mm2",23);
&psllq ("mm3",4);
&pxor ("mm7","mm2");
&pxor ("mm7","mm3"); # T1=Sigma1_512(e)
&movq (&QWP($Foff,$W512),$E); # f = e
&movq (&QWP($Goff,$W512),"mm4"); # g = f
&movq (&QWP($Hoff,$W512),"mm5"); # h = g
&pxor ("mm4","mm5"); # f^=g
&pand ("mm4",$E); # f&=e
&pxor ("mm4","mm5"); # f^=g
&paddq ("mm7","mm4"); # T1+=Ch(e,f,g)
&movq ("mm2",&QWP($Boff,$W512)); # load b
&movq ("mm3",&QWP($Coff,$W512)); # load c
&movq ($E,&QWP($Doff,$W512)); # e = d
&paddq ("mm7","mm6"); # T1+=h
&paddq ("mm7",&QWP(0,$K512,$kidx,8)); # T1+=K512[i]
&paddq ("mm7",&QWP(0,$W512,$widx,8)); # T1+=W512[i]
&paddq ($E,"mm7"); # e += T1
&movq ("mm4",$A); # %mm4 is sliding right
&movq ("mm5",$A); # %mm5 is sliding left
&psrlq ("mm4",28);
&psllq ("mm5",25);
&movq ("mm6","mm4"); # %mm6 is T2
&pxor ("mm6","mm5");
&psrlq ("mm4",6);
&psllq ("mm5",5);
&pxor ("mm6","mm4");
&pxor ("mm6","mm5");
&psrlq ("mm4",5);
&psllq ("mm5",6);
&pxor ("mm6","mm4");
&pxor ("mm6","mm5"); # T2=Sigma0_512(a)
&movq (&QWP($Boff,$W512),$A); # b = a
&movq (&QWP($Coff,$W512),"mm2"); # c = b
&movq (&QWP($Doff,$W512),"mm3"); # d = c
&movq ("mm4",$A); # %mm4=a
&por ($A,"mm3"); # a=a|c
&pand ("mm4","mm3"); # %mm4=a&c
&pand ($A,"mm2"); # a=(a|c)&b
&por ("mm4",$A); # %mm4=(a&c)|((a|c)&b)
&paddq ("mm6","mm4"); # T2+=Maj(a,b,c)
&movq ($A,"mm7"); # a=T1
&paddq ($A,"mm6"); # a+=T2
}
$func="sha512_block_sse2";
&function_begin_B($func);
if (0) {# Caller is expected to check if it's appropriate to
# call this routine. Below 3 lines are retained for
# debugging purposes...
&picmeup("eax","OPENSSL_ia32cap");
&bt (&DWP(0,"eax"),26);
&jnc ("SHA512_Transform");
}
&push ("ebp");
&mov ("ebp","esp");
&push ("ebx");
&push ("esi");
&push ("edi");
&mov ($Widx,&DWP(8,"ebp")); # A-H state, 1st arg
&mov ($data,&DWP(12,"ebp")); # input data, 2nd arg
&call (&label("pic_point")); # make it PIC!
&set_label("pic_point");
&blindpop($K512);
&lea ($K512,&DWP(&label("K512")."-".&label("pic_point"),$K512));
$W512 = "esp"; # start using %esp as W512
&sub ($W512,$W512_SZ);
&and ($W512,-16); # ensure 128-bit alignment
# make private copy of A-H
# v assume the worst and stick to unaligned load
&movdqu ("xmm0",&QWP(0,$Widx));
&movdqu ("xmm1",&QWP(16,$Widx));
&movdqu ("xmm2",&QWP(32,$Widx));
&movdqu ("xmm3",&QWP(48,$Widx));
&align(8);
&set_label("_chunk_loop");
&movdqa (&QWP($Aoff,$W512),"xmm0"); # a,b
&movdqa (&QWP($Coff,$W512),"xmm1"); # c,d
&movdqa (&QWP($Eoff,$W512),"xmm2"); # e,f
&movdqa (&QWP($Goff,$W512),"xmm3"); # g,h
&xor ($Widx,$Widx);
&movdq2q($A,"xmm0"); # load a
&movdq2q($E,"xmm2"); # load e
# Why aren't loops unrolled? It makes sense to unroll if
# execution time for loop body is comparable with branch
# penalties and/or if whole data-set resides in register bank.
# Neither is case here... Well, it would be possible to
# eliminate few store operations, but it would hardly affect
# so to say stop-watch performance, as there is a lot of
# available memory slots to fill. It will only relieve some
# pressure off memory bus...
# flip input stream byte order...
&mov ("eax",&DWP(0,$data,$Widx,8));
&mov ("ebx",&DWP(4,$data,$Widx,8));
&bswap ("eax");
&bswap ("ebx");
&mov (&DWP(0,$W512,$Widx,8),"ebx"); # W512[i]
&mov (&DWP(4,$W512,$Widx,8),"eax");
&mov (&DWP(128+0,$W512,$Widx,8),"ebx"); # copy of W512[i]
&mov (&DWP(128+4,$W512,$Widx,8),"eax");
&align(8);
&set_label("_1st_loop"); # 0-15
# flip input stream byte order...
&mov ("eax",&DWP(0+8,$data,$Widx,8));
&mov ("ebx",&DWP(4+8,$data,$Widx,8));
&bswap ("eax");
&bswap ("ebx");
&mov (&DWP(0+8,$W512,$Widx,8),"ebx"); # W512[i]
&mov (&DWP(4+8,$W512,$Widx,8),"eax");
&mov (&DWP(128+0+8,$W512,$Widx,8),"ebx"); # copy of W512[i]
&mov (&DWP(128+4+8,$W512,$Widx,8),"eax");
&set_label("_1st_looplet");
&SHA2_ROUND($Widx,$Widx); &inc($Widx);
&cmp ($Widx,15)
&jl (&label("_1st_loop"));
&je (&label("_1st_looplet")); # playing similar trick on 2nd loop
# does not improve performance...
$Kidx = "ebx"; # start using %ebx as Kidx
&mov ($Kidx,$Widx);
&align(8);
&set_label("_2nd_loop"); # 16-79
&and($Widx,0xf);
# 128-bit fragment! I update W512[i] and W512[i+1] in
# parallel:-) Note that I refer to W512[(i&0xf)+N] and not to
# W512[(i+N)&0xf]! This is exactly what I maintain the second
# copy of W512[16] for...
&movdqu ("xmm0",&QWP(8*1,$W512,$Widx,8)); # s0=W512[i+1]
&movdqa ("xmm2","xmm0"); # %xmm2 is sliding right
&movdqa ("xmm3","xmm0"); # %xmm3 is sliding left
&psrlq ("xmm2",1);
&psllq ("xmm3",56);
&movdqa ("xmm0","xmm2");
&pxor ("xmm0","xmm3");
&psrlq ("xmm2",6);
&psllq ("xmm3",7);
&pxor ("xmm0","xmm2");
&pxor ("xmm0","xmm3");
&psrlq ("xmm2",1);
&pxor ("xmm0","xmm2"); # s0 = sigma0_512(s0);
&movdqa ("xmm1",&QWP(8*14,$W512,$Widx,8)); # s1=W512[i+14]
&movdqa ("xmm4","xmm1"); # %xmm4 is sliding right
&movdqa ("xmm5","xmm1"); # %xmm5 is sliding left
&psrlq ("xmm4",6);
&psllq ("xmm5",3);
&movdqa ("xmm1","xmm4");
&pxor ("xmm1","xmm5");
&psrlq ("xmm4",13);
&psllq ("xmm5",42);
&pxor ("xmm1","xmm4");
&pxor ("xmm1","xmm5");
&psrlq ("xmm4",42);
&pxor ("xmm1","xmm4"); # s1 = sigma1_512(s1);
# + have to explictly load W512[i+9] as it's not 128-bit
# v aligned and paddq would throw an exception...
&movdqu ("xmm6",&QWP(8*9,$W512,$Widx,8));
&paddq ("xmm0","xmm1"); # s0 += s1
&paddq ("xmm0","xmm6"); # s0 += W512[i+9]
&paddq ("xmm0",&QWP(0,$W512,$Widx,8)); # s0 += W512[i]
&movdqa (&QWP(0,$W512,$Widx,8),"xmm0"); # W512[i] = s0
&movdqa (&QWP(16*8,$W512,$Widx,8),"xmm0"); # copy of W512[i]
# as the above fragment was 128-bit, we "owe" 2 rounds...
&SHA2_ROUND($Kidx,$Widx); &inc($Kidx); &inc($Widx);
&SHA2_ROUND($Kidx,$Widx); &inc($Kidx); &inc($Widx);
&cmp ($Kidx,80);
&jl (&label("_2nd_loop"));
# update A-H state
&mov ($Widx,&DWP(8,"ebp")); # A-H state, 1st arg
&movq (&QWP($Aoff,$W512),$A); # write out a
&movq (&QWP($Eoff,$W512),$E); # write out e
&movdqu ("xmm0",&QWP(0,$Widx));
&movdqu ("xmm1",&QWP(16,$Widx));
&movdqu ("xmm2",&QWP(32,$Widx));
&movdqu ("xmm3",&QWP(48,$Widx));
&paddq ("xmm0",&QWP($Aoff,$W512)); # 128-bit additions...
&paddq ("xmm1",&QWP($Coff,$W512));
&paddq ("xmm2",&QWP($Eoff,$W512));
&paddq ("xmm3",&QWP($Goff,$W512));
&movdqu (&QWP(0,$Widx),"xmm0");
&movdqu (&QWP(16,$Widx),"xmm1");
&movdqu (&QWP(32,$Widx),"xmm2");
&movdqu (&QWP(48,$Widx),"xmm3");
&add ($data,16*8); # advance input data pointer
&dec (&DWP(16,"ebp")); # decrement 3rd arg
&jnz (&label("_chunk_loop"));
# epilogue
&emms (); # required for at least ELF and Win32 ABIs
&mov ("edi",&DWP(-12,"ebp"));
&mov ("esi",&DWP(-8,"ebp"));
&mov ("ebx",&DWP(-4,"ebp"));
&leave ();
&ret ();
&align(64);
&set_label("K512"); # Yes! I keep it in the code segment!
&data_word(0xd728ae22,0x428a2f98); # u64
&data_word(0x23ef65cd,0x71374491); # u64
&data_word(0xec4d3b2f,0xb5c0fbcf); # u64
&data_word(0x8189dbbc,0xe9b5dba5); # u64
&data_word(0xf348b538,0x3956c25b); # u64
&data_word(0xb605d019,0x59f111f1); # u64
&data_word(0xaf194f9b,0x923f82a4); # u64
&data_word(0xda6d8118,0xab1c5ed5); # u64
&data_word(0xa3030242,0xd807aa98); # u64
&data_word(0x45706fbe,0x12835b01); # u64
&data_word(0x4ee4b28c,0x243185be); # u64
&data_word(0xd5ffb4e2,0x550c7dc3); # u64
&data_word(0xf27b896f,0x72be5d74); # u64
&data_word(0x3b1696b1,0x80deb1fe); # u64
&data_word(0x25c71235,0x9bdc06a7); # u64
&data_word(0xcf692694,0xc19bf174); # u64
&data_word(0x9ef14ad2,0xe49b69c1); # u64
&data_word(0x384f25e3,0xefbe4786); # u64
&data_word(0x8b8cd5b5,0x0fc19dc6); # u64
&data_word(0x77ac9c65,0x240ca1cc); # u64
&data_word(0x592b0275,0x2de92c6f); # u64
&data_word(0x6ea6e483,0x4a7484aa); # u64
&data_word(0xbd41fbd4,0x5cb0a9dc); # u64
&data_word(0x831153b5,0x76f988da); # u64
&data_word(0xee66dfab,0x983e5152); # u64
&data_word(0x2db43210,0xa831c66d); # u64
&data_word(0x98fb213f,0xb00327c8); # u64
&data_word(0xbeef0ee4,0xbf597fc7); # u64
&data_word(0x3da88fc2,0xc6e00bf3); # u64
&data_word(0x930aa725,0xd5a79147); # u64
&data_word(0xe003826f,0x06ca6351); # u64
&data_word(0x0a0e6e70,0x14292967); # u64
&data_word(0x46d22ffc,0x27b70a85); # u64
&data_word(0x5c26c926,0x2e1b2138); # u64
&data_word(0x5ac42aed,0x4d2c6dfc); # u64
&data_word(0x9d95b3df,0x53380d13); # u64
&data_word(0x8baf63de,0x650a7354); # u64
&data_word(0x3c77b2a8,0x766a0abb); # u64
&data_word(0x47edaee6,0x81c2c92e); # u64
&data_word(0x1482353b,0x92722c85); # u64
&data_word(0x4cf10364,0xa2bfe8a1); # u64
&data_word(0xbc423001,0xa81a664b); # u64
&data_word(0xd0f89791,0xc24b8b70); # u64
&data_word(0x0654be30,0xc76c51a3); # u64
&data_word(0xd6ef5218,0xd192e819); # u64
&data_word(0x5565a910,0xd6990624); # u64
&data_word(0x5771202a,0xf40e3585); # u64
&data_word(0x32bbd1b8,0x106aa070); # u64
&data_word(0xb8d2d0c8,0x19a4c116); # u64
&data_word(0x5141ab53,0x1e376c08); # u64
&data_word(0xdf8eeb99,0x2748774c); # u64
&data_word(0xe19b48a8,0x34b0bcb5); # u64
&data_word(0xc5c95a63,0x391c0cb3); # u64
&data_word(0xe3418acb,0x4ed8aa4a); # u64
&data_word(0x7763e373,0x5b9cca4f); # u64
&data_word(0xd6b2b8a3,0x682e6ff3); # u64
&data_word(0x5defb2fc,0x748f82ee); # u64
&data_word(0x43172f60,0x78a5636f); # u64
&data_word(0xa1f0ab72,0x84c87814); # u64
&data_word(0x1a6439ec,0x8cc70208); # u64
&data_word(0x23631e28,0x90befffa); # u64
&data_word(0xde82bde9,0xa4506ceb); # u64
&data_word(0xb2c67915,0xbef9a3f7); # u64
&data_word(0xe372532b,0xc67178f2); # u64
&data_word(0xea26619c,0xca273ece); # u64
&data_word(0x21c0c207,0xd186b8c7); # u64
&data_word(0xcde0eb1e,0xeada7dd6); # u64
&data_word(0xee6ed178,0xf57d4f7f); # u64
&data_word(0x72176fba,0x06f067aa); # u64
&data_word(0xa2c898a6,0x0a637dc5); # u64
&data_word(0xbef90dae,0x113f9804); # u64
&data_word(0x131c471b,0x1b710b35); # u64
&data_word(0x23047d84,0x28db77f5); # u64
&data_word(0x40c72493,0x32caab7b); # u64
&data_word(0x15c9bebc,0x3c9ebe0a); # u64
&data_word(0x9c100d4c,0x431d67c4); # u64
&data_word(0xcb3e42b6,0x4cc5d4be); # u64
&data_word(0xfc657e2a,0x597f299c); # u64
&data_word(0x3ad6faec,0x5fcb6fab); # u64
&data_word(0x4a475817,0x6c44198c); # u64
&function_end_B($func);
&asm_finish();
|