/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% M M AAA TTTTT L AAA BBBB %
% MM MM A A T L A A B B %
% M M M AAAAA T L AAAAA BBBB %
% M M A A T L A A B B %
% M M A A T LLLLL A A BBBB %
% %
% %
% Read MATLAB Image Format. %
% %
% Software Design %
% Jaroslav Fojtik %
% June 2001 %
% %
% %
% Permission is hereby granted, free of charge, to any person obtaining a %
% copy of this software and associated documentation files ("ImageMagick"), %
% to deal in ImageMagick without restriction, including without limitation %
% the rights to use, copy, modify, merge, publish, distribute, sublicense, %
% and/or sell copies of ImageMagick, and to permit persons to whom the %
% ImageMagick is furnished to do so, subject to the following conditions: %
% %
% The above copyright notice and this permission notice shall be included in %
% all copies or substantial portions of ImageMagick. %
% %
% The software is provided "as is", without warranty of any kind, express or %
% implied, including but not limited to the warranties of merchantability, %
% fitness for a particular purpose and noninfringement. In no event shall %
% ImageMagick Studio be liable for any claim, damages or other liability, %
% whether in an action of contract, tort or otherwise, arising from, out of %
% or in connection with ImageMagick or the use or other dealings in %
% ImageMagick. %
% %
% Except as contained in this notice, the name of the ImageMagick Studio %
% shall not be used in advertising or otherwise to promote the sale, use or %
% other dealings in ImageMagick without prior written authorization from the %
% ImageMagick Studio. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/blob.h"
#include "magick/blob-private.h"
#include "magick/color-private.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/image.h"
#include "magick/image-private.h"
#include "magick/list.h"
#include "magick/magick.h"
#include "magick/memory_.h"
#include "magick/shear.h"
#include "magick/quantum-private.h"
#include "magick/static.h"
#include "magick/string_.h"
#include "magick/module.h"
#include "magick/transform.h"
/*
Forward declaration.
*/
static MagickBooleanType
WriteMATImage(const ImageInfo *,Image *);
/* Auto coloring method, sorry this creates some artefact inside data
MinReal+j*MaxComplex = red MaxReal+j*MaxComplex = black
MinReal+j*0 = white MaxReal+j*0 = black
MinReal+j*MinComplex = blue MaxReal+j*MinComplex = black
*/
typedef struct
{
char identific[124];
unsigned short Version;
char EndianIndicator[2];
unsigned long DataType;
unsigned long ObjectSize;
unsigned long unknown1;
unsigned long unknown2;
unsigned short unknown5;
unsigned char StructureFlag;
unsigned char StructureClass;
unsigned long unknown3;
unsigned long unknown4;
unsigned long DimFlag;
unsigned long SizeX;
unsigned long SizeY;
unsigned short Flag1;
unsigned short NameFlag;
}
MATHeader;
static const char *MonthsTab[12]={"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"};
static const char *DayOfWTab[7]={"Sun","Mon","Tue","Wed","Thu","Fri","Sat"};
static const char *OsDesc=
#ifdef __WIN32__
"PCWIN";
#else
#ifdef __APPLE__
"MAC";
#else
"LNX86";
#endif
#endif
typedef enum
{
miINT8 = 1, /* 8 bit signed */
miUINT8, /* 8 bit unsigned */
miINT16, /* 16 bit signed */
miUINT16, /* 16 bit unsigned */
miINT32, /* 32 bit signed */
miUINT32, /* 32 bit unsigned */
miSINGLE, /* IEEE 754 single precision float */
miRESERVE1,
miDOUBLE, /* IEEE 754 double precision float */
miRESERVE2,
miRESERVE3,
miINT64, /* 64 bit signed */
miUINT64, /* 64 bit unsigned */
miMATRIX, /* MATLAB array */
miCOMPRESSED, /* Compressed Data */
miUTF8, /* Unicode UTF-8 Encoded Character Data */
miUTF16, /* Unicode UTF-16 Encoded Character Data */
miUTF32 /* Unicode UTF-32 Encoded Character Data */
} mat5_data_type;
typedef enum
{
mxCELL_CLASS=1, /* cell array */
mxSTRUCT_CLASS, /* structure */
mxOBJECT_CLASS, /* object */
mxCHAR_CLASS, /* character array */
mxSPARSE_CLASS, /* sparse array */
mxDOUBLE_CLASS, /* double precision array */
mxSINGLE_CLASS, /* single precision floating point */
mxINT8_CLASS, /* 8 bit signed integer */
mxUINT8_CLASS, /* 8 bit unsigned integer */
mxINT16_CLASS, /* 16 bit signed integer */
mxUINT16_CLASS, /* 16 bit unsigned integer */
mxINT32_CLASS, /* 32 bit signed integer */
mxUINT32_CLASS, /* 32 bit unsigned integer */
mxINT64_CLASS, /* 64 bit signed integer */
mxUINT64_CLASS, /* 64 bit unsigned integer */
mxFUNCTION_CLASS /* Function handle */
} arrayclasstype;
#define FLAG_COMPLEX 0x8
#define FLAG_GLOBAL 0x4
#define FLAG_LOGICAL 0x2
static const QuantumType z2qtype[4] = {GrayQuantum, BlueQuantum, GreenQuantum, RedQuantum};
static void InsertComplexDoubleRow(double *p, int y, Image * image, double MinVal,
double MaxVal)
{
double f;
int x;
register PixelPacket *q;
if (MinVal == 0)
MinVal = -1;
if (MaxVal == 0)
MaxVal = 1;
q = SetImagePixels(image, 0, y, image->columns, 1);
if (q == (PixelPacket *) NULL)
return;
for (x = 0; x < (long) image->columns; x++)
{
if (*p > 0)
{
f = (*p / MaxVal) * (MaxRGB - q->red);
if (f + q->red > MaxRGB)
q->red = MaxRGB;
else
q->red += (int) f;
if ((int) f / 2.0 > q->green)
q->green = q->blue = 0;
else
q->green = q->blue -= (int) (f / 2.0);
}
if (*p < 0)
{
f = (*p / MaxVal) * (MaxRGB - q->blue);
if (f + q->blue > MaxRGB)
q->blue = MaxRGB;
else
q->blue += (int) f;
if ((int) f / 2.0 > q->green)
q->green = q->red = 0;
else
q->green = q->red -= (int) (f / 2.0);
}
p++;
q++;
}
if (!SyncImagePixels(image))
return;
/* if (image->previous == (Image *) NULL)
if (QuantumTick(y,image->rows))
MagickMonitor(LoadImageText,image->rows-y-1,image->rows); */
return;
}
static void InsertComplexFloatRow(float *p, int y, Image * image, double MinVal,
double MaxVal)
{
double f;
int x;
register PixelPacket *q;
if (MinVal == 0)
MinVal = -1;
if (MaxVal == 0)
MaxVal = 1;
q = SetImagePixels(image, 0, y, image->columns, 1);
if (q == (PixelPacket *) NULL)
return;
for (x = 0; x < (long) image->columns; x++)
{
if (*p > 0)
{
f = (*p / MaxVal) * (MaxRGB - q->red);
if (f + q->red > MaxRGB)
q->red = MaxRGB;
else
q->red += (int) f;
if ((int) f / 2.0 > q->green)
q->green = q->blue = 0;
else
q->green = q->blue -= (int) (f / 2.0);
}
if (*p < 0)
{
f = (*p / MaxVal) * (MaxRGB - q->blue);
if (f + q->blue > MaxRGB)
q->blue = MaxRGB;
else
q->blue += (int) f;
if ((int) f / 2.0 > q->green)
q->green = q->red = 0;
else
q->green = q->red -= (int) (f / 2.0);
}
p++;
q++;
}
if (!SyncImagePixels(image))
return;
/* if (image->previous == (Image *) NULL)
if (QuantumTick(y,image->rows))
MagickMonitor(LoadImageText,image->rows-y-1,image->rows); */
return;
}
/************** READERS ******************/
/* This function reads one block of floats*/
static void ReadBlobFloatsLSB(Image * image, size_t len, float *data)
{
while (len >= 4)
{
*data++ = ReadBlobFloat(image);
len -= sizeof(float);
}
if (len > 0)
(void) SeekBlob(image, len, SEEK_CUR);
}
static void ReadBlobFloatsMSB(Image * image, size_t len, float *data)
{
while (len >= 4)
{
*data++ = ReadBlobFloat(image);
len -= sizeof(float);
}
if (len > 0)
(void) SeekBlob(image, len, SEEK_CUR);
}
/* This function reads one block of doubles*/
static void ReadBlobDoublesLSB(Image * image, size_t len, double *data)
{
while (len >= 8)
{
*data++ = ReadBlobDouble(image);
len -= sizeof(double);
}
if (len > 0)
(void) SeekBlob(image, len, SEEK_CUR);
}
static void ReadBlobDoublesMSB(Image * image, size_t len, double *data)
{
while (len >= 8)
{
*data++ = ReadBlobDouble(image);
len -= sizeof(double);
}
if (len > 0)
(void) SeekBlob(image, len, SEEK_CUR);
}
/* Calculate minimum and maximum from a given block of data */
static void CalcMinMax(Image *image, MATHeader *MATLAB_HDR, unsigned long CellType, unsigned ldblk, void *BImgBuff, double *Min, double *Max)
{
MagickOffsetType filepos;
int i, x;
void (*ReadBlobDoublesXXX)(Image * image, size_t len, double *data);
void (*ReadBlobFloatsXXX)(Image * image, size_t len, float *data);
double *dblrow;
float *fltrow;
if (!strncmp(MATLAB_HDR->EndianIndicator, "IM", 2))
{
ReadBlobDoublesXXX = ReadBlobDoublesLSB;
ReadBlobFloatsXXX = ReadBlobFloatsLSB;
}
else /* MI */
{
ReadBlobDoublesXXX = ReadBlobDoublesMSB;
ReadBlobFloatsXXX = ReadBlobFloatsMSB;
}
filepos = TellBlob(image); /* Please note that file seeking occurs only in the case of doubles */
for (i = 0; i < (long) MATLAB_HDR->SizeY; i++)
{
if (CellType==miDOUBLE)
{
ReadBlobDoublesXXX(image, ldblk, (double *)BImgBuff);
dblrow = (double *)BImgBuff;
if (i == 0)
{
*Min = *Max = *dblrow;
}
for (x = 0; x < (long) MATLAB_HDR->SizeX; x++)
{
if (*Min > *dblrow)
*Min = *dblrow;
if (*Max < *dblrow)
*Max = *dblrow;
dblrow++;
}
}
if (CellType==miSINGLE)
{
ReadBlobFloatsXXX(image, ldblk, (float *)BImgBuff);
fltrow = (float *)BImgBuff;
if (i == 0)
{
*Min = *Max = *fltrow;
}
for (x = 0; x < (long) MATLAB_HDR->SizeX; x++)
{
if (*Min > *fltrow)
*Min = *fltrow;
if (*Max < *fltrow)
*Max = *fltrow;
fltrow++;
}
}
}
(void) SeekBlob(image, filepos, SEEK_SET);
}
static void FixSignedValues(PixelPacket *q, int y)
{
while(y-->0)
{
/* Please note that negative values will overflow
Q=8; MaxRGB=255: <0;127> + 127+1 = <128; 255>
<-1;-128> + 127+1 = <0; 127> */
q->red += MaxRGB/2 + 1;
q->green += MaxRGB/ + 1;
q->blue += MaxRGB/ + 1;
q++;
}
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e a d M A T L A B i m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ReadMATImage() reads an MAT X image file and returns it. It allocates
% the memory necessary for the new Image structure and returns a pointer to
% the new image.
%
% The format of the ReadMATImage method is:
%
% Image *ReadMATImage(const ImageInfo *image_info,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image_info: Specifies a pointer to a ImageInfo structure.
%
% o exception: return any errors or warnings in this structure.
%
*/
static inline size_t MagickMin(const size_t x,const size_t y)
{
if (x < y)
return(x);
return(y);
}
static Image *ReadMATImage(const ImageInfo *image_info,ExceptionInfo *exception)
{
Image *image,
*rotated_image;
PixelPacket *q;
unsigned int status;
MATHeader MATLAB_HDR;
unsigned long size;
unsigned long CellType;
QuantumInfo quantum_info;
int i;
long ldblk;
unsigned char *BImgBuff = NULL;
double MinVal, MaxVal;
unsigned long Unknown6;
unsigned z;
int logging;
MagickOffsetType filepos=0x80;
BlobInfo *blob;
unsigned long (*ReadBlobXXXLong)(Image *image);
unsigned short (*ReadBlobXXXShort)(Image *image);
void (*ReadBlobDoublesXXX)(Image * image, size_t len, double *data);
void (*ReadBlobFloatsXXX)(Image * image, size_t len, float *data);
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickSignature);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
logging=LogMagickEvent(CoderEvent,GetMagickModule(),"enter");
/*
Open image file.
*/
image = AllocateImage(image_info);
status = OpenBlob(image_info, image, ReadBinaryBlobMode, exception);
if (status == MagickFalse)
{
image=DestroyImageList(image);
return((Image *) NULL);
}
/*
Read MATLAB image.
*/
(void) ReadBlob(image, 124, (unsigned char *) &MATLAB_HDR.identific);
MATLAB_HDR.Version = ReadBlobLSBShort(image);
(void) ReadBlob(image, 2, (unsigned char *) &MATLAB_HDR.EndianIndicator);
GetQuantumInfo(image_info,&quantum_info);
if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule()," Endian %c%c",
MATLAB_HDR.EndianIndicator[0],MATLAB_HDR.EndianIndicator[1]);
if (!strncmp(MATLAB_HDR.EndianIndicator, "IM", 2))
{
ReadBlobXXXLong = ReadBlobLSBLong;
ReadBlobXXXShort = ReadBlobLSBShort;
ReadBlobDoublesXXX = ReadBlobDoublesLSB;
ReadBlobFloatsXXX = ReadBlobFloatsLSB;
image->endian = LSBEndian;
}
else if (!strncmp(MATLAB_HDR.EndianIndicator, "MI", 2))
{
ReadBlobXXXLong = ReadBlobMSBLong;
ReadBlobXXXShort = ReadBlobMSBShort;
ReadBlobDoublesXXX = ReadBlobDoublesMSB;
ReadBlobFloatsXXX = ReadBlobFloatsMSB;
image->endian = MSBEndian;
}
else
goto MATLAB_KO; /* unsupported endian */
if (strncmp(MATLAB_HDR.identific, "MATLAB", 6))
MATLAB_KO: ThrowReaderException(CorruptImageError,"ImproperImageHeader");
filepos = TellBlob(image);
while(!EOFBlob(image)) /* object parser loop */
{
SeekBlob(image,filepos,SEEK_SET);
//printf("pos=%X\n",TellBlob(image));
MATLAB_HDR.DataType = ReadBlobXXXLong(image);
if(EOFBlob(image)) break;
MATLAB_HDR.ObjectSize = ReadBlobXXXLong(image);
if(EOFBlob(image)) break;
filepos += MATLAB_HDR.ObjectSize + 4 + 4;
if (MATLAB_HDR.DataType != miMATRIX) continue; /* skip another objects. */
MATLAB_HDR.unknown1 = ReadBlobXXXLong(image);
MATLAB_HDR.unknown2 = ReadBlobXXXLong(image);
MATLAB_HDR.unknown5 = ReadBlobXXXLong(image);
MATLAB_HDR.StructureClass = MATLAB_HDR.unknown5 & 0xFF;
MATLAB_HDR.StructureFlag = (MATLAB_HDR.unknown5>>8) & 0xFF;
MATLAB_HDR.unknown3 = ReadBlobXXXLong(image);
MATLAB_HDR.unknown4 = ReadBlobXXXLong(image);
MATLAB_HDR.DimFlag = ReadBlobXXXLong(image);
MATLAB_HDR.SizeX = ReadBlobXXXLong(image);
MATLAB_HDR.SizeY = ReadBlobXXXLong(image);
switch(MATLAB_HDR.DimFlag)
{
case 8: z=1; break; /* 2D matrix*/
case 12: z=ReadBlobXXXLong(image); /* 3D matrix RGB*/
Unknown6 = ReadBlobXXXLong(image);
if(z!=3) ThrowReaderException(CoderError, "MultidimensionalMatricesAreNotSupported");
break;
default: ThrowReaderException(CoderError, "MultidimensionalMatricesAreNotSupported");
}
MATLAB_HDR.Flag1 = ReadBlobXXXShort(image);
MATLAB_HDR.NameFlag = ReadBlobXXXShort(image);
if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),
"MATLAB_HDR.StructureClass %d",MATLAB_HDR.StructureClass);
if (MATLAB_HDR.StructureClass != mxCHAR_CLASS &&
MATLAB_HDR.StructureClass != mxSINGLE_CLASS && /* float + complex float */
MATLAB_HDR.StructureClass != mxDOUBLE_CLASS && /* double + complex double */
MATLAB_HDR.StructureClass != mxINT8_CLASS &&
MATLAB_HDR.StructureClass != mxUINT8_CLASS && /* uint8 + uint8 3D */
MATLAB_HDR.StructureClass != mxINT16_CLASS &&
MATLAB_HDR.StructureClass != mxUINT16_CLASS && /* uint16 + uint16 3D */
MATLAB_HDR.StructureClass != mxINT32_CLASS &&
MATLAB_HDR.StructureClass != mxUINT32_CLASS && /* uint32 + uint32 3D */
MATLAB_HDR.StructureClass != mxINT64_CLASS &&
MATLAB_HDR.StructureClass != mxUINT64_CLASS) /* uint64 + uint64 3D */
ThrowReaderException(CoderError,"UnsupportedCellTypeInTheMatrix");
switch (MATLAB_HDR.NameFlag)
{
case 0:
size = ReadBlobXXXLong(image); /* Object name string size */
size = 4 * (long) ((size + 3 + 1) / 4);
(void) SeekBlob(image, size, SEEK_CUR);
break;
case 1:
case 2:
case 3:
case 4:
(void) ReadBlob(image, 4, (unsigned char *) &size); /* Object name string */
break;
default:
goto MATLAB_KO;
}
CellType = ReadBlobXXXLong(image); /* Additional object type */
if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),
"MATLAB_HDR.CellType: %ld",CellType);
(void) ReadBlob(image, 4, (unsigned char *) &size); /* data size */
switch (CellType)
{
case miINT8:
case miUINT8:
image->depth= 8;
ldblk = (long) MATLAB_HDR.SizeX;
break;
case miINT16:
case miUINT16:
image->depth= 16;
ldblk = (long) (2 * MATLAB_HDR.SizeX);
break;
case miINT32:
case miUINT32:
image->depth= 32;
ldblk = (long) (4 * MATLAB_HDR.SizeX);
break;
case miINT64:
case miUINT64:
image->depth= 64;
ldblk = (long) (8 * MATLAB_HDR.SizeX);
break;
case miSINGLE:
image->depth= 32;
quantum_info.format=FloatingPointQuantumFormat;
if (MATLAB_HDR.StructureFlag & FLAG_COMPLEX)
{ /* complex float type cell */
}
ldblk = (long) (4 * MATLAB_HDR.SizeX);
break;
case miDOUBLE:
image->depth= 64;
quantum_info.format=FloatingPointQuantumFormat;
if (sizeof(double) != 8)
ThrowReaderException(CoderError, "IncompatibleSizeOfDouble");
if (MATLAB_HDR.StructureFlag & FLAG_COMPLEX)
{ /* complex double type cell */
}
ldblk = (long) (8 * MATLAB_HDR.SizeX);
break;
default:
ThrowReaderException(CoderError, "UnsupportedCellTypeInTheMatrix");
}
image->columns = MATLAB_HDR.SizeX;
image->rows = MATLAB_HDR.SizeY;
image->colors = 1l >> 8;
if (image->columns == 0 || image->rows == 0)
goto MATLAB_KO;
/*
If ping is true, then only set image size and colors without
reading any image data.
*/
if (image_info->ping)
{
unsigned long temp = image->columns;
image->columns = image->rows;
image->rows = temp;
goto done_reading; //!!!!!! BAD !!!!
}
/* ----- Load raster data ----- */
BImgBuff = (unsigned char *) AcquireQuantumMemory(ldblk,sizeof(*BImgBuff));
if (BImgBuff == NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
MinVal = 0;
MaxVal = 0;
if (CellType==miDOUBLE || CellType==miSINGLE) /* Find Min and Max Values for floats */
{
CalcMinMax(image, &MATLAB_HDR, CellType, ldblk, BImgBuff, &quantum_info.minimum, &quantum_info.maximum);
}
/* Main loop for reading all scanlines */
if(z==1) z=0; /* read grey scanlines */
/* else read color scanlines */
do
{
for (i = 0; i < (long) MATLAB_HDR.SizeY; i++)
{
q=SetImagePixels(image,0,MATLAB_HDR.SizeY-i-1,image->columns,1);
if (q == (PixelPacket *)NULL) goto ExitLoop;
(void) ReadBlob(image, ldblk, (unsigned char *)BImgBuff);
(void) ExportQuantumPixels(image,&quantum_info,z2qtype[z],BImgBuff);
if (z<=1 && // fix only during a last pass z==0 || z==1
(CellType==miINT8 || CellType==miINT16 || CellType==miINT32 || CellType==miINT64))
FixSignedValues(q,MATLAB_HDR.SizeX);
if (!SyncImagePixels(image)) goto ExitLoop;
}
} while(z-- >= 2);
ExitLoop:
/* Read complex part of numbers here */
if (MATLAB_HDR.StructureFlag & FLAG_COMPLEX)
{ /* Find Min and Max Values for complex parts of floats */
CellType = ReadBlobXXXLong(image); /* Additional object type */
i = ReadBlobXXXLong(image); /* size of a complex part - toss away*/
if (CellType==miDOUBLE || CellType==miSINGLE)
{
CalcMinMax(image, &MATLAB_HDR, CellType, ldblk, BImgBuff, &MinVal, &MaxVal);
}
if (CellType==miDOUBLE)
for (i = 0; i < (long) MATLAB_HDR.SizeY; i++)
{
ReadBlobDoublesXXX(image, ldblk, (double *)BImgBuff);
InsertComplexDoubleRow((double *)BImgBuff, i, image, MinVal, MaxVal);
}
if (CellType==miSINGLE)
for (i = 0; i < (long) MATLAB_HDR.SizeY; i++)
{
ReadBlobFloatsXXX(image, ldblk, (float *)BImgBuff);
InsertComplexFloatRow((float *)BImgBuff, i, image, MinVal, MaxVal);
}
}
/* Image is gray when no complex flag is set and 2D Matrix AGAIN!!! */
/* Rotate image. */
rotated_image = RotateImage(image, 90.0, exception);
if (rotated_image != (Image *) NULL)
{
/* Remove page offsets added by RotateImage */
rotated_image->page.x=0;
rotated_image->page.y=0;
blob = rotated_image->blob;
rotated_image->blob = image->blob;
image->blob = blob;
AppendImageToList(&image,rotated_image);
DeleteImageFromList(&image);
}
done_reading:
/* Allocate next image structure. */
AllocateNextImage(image_info,image);
if (image->next == (Image *) NULL) break;
image=SyncNextImageInList(image);
image->columns=image->rows=0;
image->colors=0;
/* row scan buffer is no longer needed */
BImgBuff=(unsigned char *) RelinquishMagickMemory(BImgBuff);
}
BImgBuff=(unsigned char *) RelinquishMagickMemory(BImgBuff);
CloseBlob(image);
{
Image *p;
long scene=0;
/*
Rewind list, removing any empty images while rewinding.
*/
p=image;
image=NULL;
while (p != (Image *) NULL)
{
Image *tmp=p;
if ((p->rows == 0) || (p->columns == 0)) {
p=p->previous;
DeleteImageFromList(&tmp);
} else {
image=p;
p=p->previous;
}
}
/*
Fix scene numbers
*/
for (p=image; p != (Image *) NULL; p=p->next)
p->scene=scene++;
}
if (logging) (void) LogMagickEvent(CoderEvent,GetMagickModule(),"return");
return (image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e g i s t e r M A T I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Method RegisterMATImage adds attributes for the MAT image format to
% the list of supported formats. The attributes include the image format
% tag, a method to read and/or write the format, whether the format
% supports the saving of more than one frame to the same file or blob,
% whether the format supports native in-memory I/O, and a brief
% description of the format.
%
% The format of the RegisterMATImage method is:
%
% unsigned long RegisterMATImage(void)
%
*/
ModuleExport unsigned long RegisterMATImage(void)
{
MagickInfo * entry;
entry = SetMagickInfo("MAT");
entry->decoder=(DecodeImageHandler *) ReadMATImage;
entry->encoder=(EncodeImageHandler *) WriteMATImage;
entry->seekable_stream=MagickTrue;
entry->description=AcquireString("MATLAB image format");
entry->module=AcquireString("MAT");
(void) RegisterMagickInfo(entry);
return(MagickImageCoderSignature);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% U n r e g i s t e r M A T I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Method UnregisterMATImage removes format registrations made by the
% MAT module from the list of supported formats.
%
% The format of the UnregisterMATImage method is:
%
% UnregisterMATImage(void)
%
*/
ModuleExport void UnregisterMATImage(void)
{
(void) UnregisterMagickInfo("MAT");
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% W r i t e M A T L A B I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Function WriteMATImage writes an Matlab matrix to a file.
%
% The format of the WriteMATImage method is:
%
% unsigned int WriteMATImage(const ImageInfo *image_info,Image *image)
%
% A description of each parameter follows.
%
% o status: Function WriteMATImage return True if the image is written.
% False is returned is there is a memory shortage or if the image file
% fails to write.
%
% o image_info: Specifies a pointer to a ImageInfo structure.
%
% o image: A pointer to an Image structure.
%
*/
static MagickBooleanType WriteMATImage(const ImageInfo *image_info,Image *image)
{
long y;
unsigned z;
const PixelPacket *p;
unsigned int status;
int logging;
unsigned long DataSize;
char padding;
char MATLAB_HDR[0x80];
time_t current_time;
const struct tm *t;
unsigned char *pixels;
int is_gray;
MagickOffsetType
scene;
QuantumInfo
quantum_info;
/*
Open output image file.
*/
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickSignature);
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
logging=LogMagickEvent(CoderEvent,GetMagickModule(),"enter MAT");
status=OpenBlob(image_info,image,WriteBinaryBlobMode,&image->exception);
if (status == MagickFalse)
return(MagickFalse);
image->depth=8;
current_time=time((time_t *) NULL);
t=localtime(¤t_time);
(void) memset(MATLAB_HDR,' ',MagickMin(sizeof(MATLAB_HDR),124));
FormatMagickString(MATLAB_HDR,MaxTextExtent,"MATLAB 5.0 MAT-file, Platform: %s, Created on: %s %s %2d %2d:%2d:%2d %d",
OsDesc,
DayOfWTab[t->tm_wday],
MonthsTab[t->tm_mon],
t->tm_mday,
t->tm_hour,t->tm_min,t->tm_sec,
t->tm_year+1900);
MATLAB_HDR[0x7C]=0;
MATLAB_HDR[0x7D]=1;
MATLAB_HDR[0x7E]='I';
MATLAB_HDR[0x7F]='M';
(void) WriteBlob(image,sizeof(MATLAB_HDR),(unsigned char *) MATLAB_HDR);
scene=0;
do
{
if (image_info->colorspace == UndefinedColorspace)
(void) SetImageColorspace(image,RGBColorspace);
pixels=(unsigned char *) AcquireQuantumMemory(image->rows,sizeof(*pixels));
if (pixels == (unsigned char *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
is_gray = IsGrayImage(image,&image->exception);
z = is_gray ? 0 : 3;
/*
Store MAT header.
*/
DataSize = image->rows /*Y*/ * image->columns /*X*/;
if(!is_gray) DataSize *= 3 /*Z*/;
padding=((unsigned char)(DataSize-1) & 0x7) ^ 0x7;
(void) WriteBlobLSBLong(image, miMATRIX);
(void) WriteBlobLSBLong(image, DataSize+padding+(is_gray ? 48l : 56l));
(void) WriteBlobLSBLong(image, 0x6); /* 0x88 */
(void) WriteBlobLSBLong(image, 0x8); /* 0x8C */
(void) WriteBlobLSBLong(image, 0x6); /* 0x90 */
(void) WriteBlobLSBLong(image, 0);
(void) WriteBlobLSBLong(image, 0x5); /* 0x98 */
(void) WriteBlobLSBLong(image, is_gray ? 0x8 : 0xC); /* 0x9C - DimFlag */
(void) WriteBlobLSBLong(image, image->rows); /* x: 0xA0 */
(void) WriteBlobLSBLong(image, image->columns); /* y: 0xA4 */
if(!is_gray)
{
(void) WriteBlobLSBLong(image, 3); /* z: 0xA8 */
(void) WriteBlobLSBLong(image, 0);
}
(void) WriteBlobLSBShort(image, 1); /* 0xB0 */
(void) WriteBlobLSBShort(image, 1); /* 0xB2 */
(void) WriteBlobLSBLong(image, 'M'); /* 0xB4 */
(void) WriteBlobLSBLong(image, 0x2); /* 0xB8 */
(void) WriteBlobLSBLong(image, DataSize); /* 0xBC */
/*
Store image data.
*/
GetQuantumInfo(image_info,&quantum_info);
do
{
for (y=0; y < (long)image->columns; y++)
{
p=AcquireImagePixels(image,y,0,1,image->rows,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
(void) ImportQuantumPixels(image,&quantum_info,z2qtype[z],pixels);
(void) WriteBlob(image,image->rows,pixels);
}
if (!SyncImagePixels(image))
break;
} while(z-- >= 2);
while(padding-->0) (void) WriteBlobByte(image,0);
pixels=(unsigned char *) RelinquishMagickMemory(pixels);
if (GetNextImageInList(image) == (Image *) NULL)
break;
image=SyncNextImageInList(image);
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
status=image->progress_monitor(SaveImagesTag,scene,
GetImageListLength(image),image->client_data);
if (status == MagickFalse)
break;
}
scene++;
} while (image_info->adjoin != MagickFalse);
CloseBlob(image);
return(MagickTrue);
}
|