/*
* tclCompCmds.c --
*
* This file contains compilation procedures that compile various Tcl
* commands into a sequence of instructions ("bytecodes").
*
* Copyright (c) 1997-1998 Sun Microsystems, Inc.
* Copyright (c) 2001 by Kevin B. Kenny. All rights reserved.
* Copyright (c) 2002 ActiveState Corporation.
* Copyright (c) 2004-2006 by Donal K. Fellows.
*
* See the file "license.terms" for information on usage and redistribution of
* this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
* RCS: @(#) $Id: tclCompCmds.c,v 1.143.2.2 2009/08/25 21:01:05 andreas_kupries Exp $
*/
#include "tclInt.h"
#include "tclCompile.h"
/*
* Macro that encapsulates an efficiency trick that avoids a function call for
* the simplest of compiles. The ANSI C "prototype" for this macro is:
*
* static void CompileWord(CompileEnv *envPtr, Tcl_Token *tokenPtr,
* Tcl_Interp *interp, int word);
*/
#define CompileWord(envPtr, tokenPtr, interp, word) \
if ((tokenPtr)->type == TCL_TOKEN_SIMPLE_WORD) { \
TclEmitPush(TclRegisterNewLiteral((envPtr), (tokenPtr)[1].start, \
(tokenPtr)[1].size), (envPtr)); \
} else { \
envPtr->line = mapPtr->loc[eclIndex].line[word]; \
envPtr->clNext = mapPtr->loc[eclIndex].next[word]; \
TclCompileTokens((interp), (tokenPtr)+1, (tokenPtr)->numComponents, \
(envPtr)); \
}
/*
* TIP #280: Remember the per-word line information of the current command. An
* index is used instead of a pointer as recursive compilation may reallocate,
* i.e. move, the array. This is also the reason to save the nuloc now, it may
* change during the course of the function.
*
* Macro to encapsulate the variable definition and setup.
*/
#define DefineLineInformation \
ExtCmdLoc *mapPtr = envPtr->extCmdMapPtr; \
int eclIndex = mapPtr->nuloc - 1
#define SetLineInformation(word) \
envPtr->line = mapPtr->loc [eclIndex].line [(word)]; \
envPtr->clNext = mapPtr->loc [eclIndex].next [(word)]
/*
* Convenience macro for use when compiling bodies of commands. The ANSI C
* "prototype" for this macro is:
*
* static void CompileBody(CompileEnv *envPtr, Tcl_Token *tokenPtr,
* Tcl_Interp *interp);
*/
#define CompileBody(envPtr, tokenPtr, interp) \
TclCompileCmdWord((interp), (tokenPtr)+1, (tokenPtr)->numComponents, \
(envPtr))
/*
* Convenience macro for use when compiling tokens to be pushed. The ANSI C
* "prototype" for this macro is:
*
* static void CompileTokens(CompileEnv *envPtr, Tcl_Token *tokenPtr,
* Tcl_Interp *interp);
*/
#define CompileTokens(envPtr, tokenPtr, interp) \
TclCompileTokens((interp), (tokenPtr)+1, (tokenPtr)->numComponents, \
(envPtr));
/*
* Convenience macro for use when pushing literals. The ANSI C "prototype" for
* this macro is:
*
* static void PushLiteral(CompileEnv *envPtr,
* const char *string, int length);
*/
#define PushLiteral(envPtr, string, length) \
TclEmitPush(TclRegisterNewLiteral((envPtr), (string), (length)), (envPtr))
/*
* Macro to advance to the next token; it is more mnemonic than the address
* arithmetic that it replaces. The ANSI C "prototype" for this macro is:
*
* static Tcl_Token * TokenAfter(Tcl_Token *tokenPtr);
*/
#define TokenAfter(tokenPtr) \
((tokenPtr) + ((tokenPtr)->numComponents + 1))
/*
* Macro to get the offset to the next instruction to be issued. The ANSI C
* "prototype" for this macro is:
*
* static int CurrentOffset(CompileEnv *envPtr);
*/
#define CurrentOffset(envPtr) \
((envPtr)->codeNext - (envPtr)->codeStart)
/*
* Note: the exceptDepth is a bit of a misnomer: TEBC only needs the
* maximal depth of nested CATCH ranges in order to alloc runtime
* memory. These macros should compute precisely that? OTOH, the nesting depth
* of LOOP ranges is an interesting datum for debugging purposes, and that is
* what we compute now.
*
* static int DeclareExceptionRange(CompileEnv *envPtr, int type);
* static int ExceptionRangeStarts(CompileEnv *envPtr, int index);
* static void ExceptionRangeEnds(CompileEnv *envPtr, int index);
* static void ExceptionRangeTarget(CompileEnv *envPtr, int index, LABEL);
*/
#define DeclareExceptionRange(envPtr, type) \
(TclCreateExceptRange((type), (envPtr)))
#define ExceptionRangeStarts(envPtr, index) \
(((envPtr)->exceptDepth++), \
((envPtr)->maxExceptDepth = \
TclMax((envPtr)->exceptDepth, (envPtr)->maxExceptDepth)), \
((envPtr)->exceptArrayPtr[(index)].codeOffset = CurrentOffset(envPtr)))
#define ExceptionRangeEnds(envPtr, index) \
(((envPtr)->exceptDepth--), \
((envPtr)->exceptArrayPtr[(index)].numCodeBytes = \
CurrentOffset(envPtr) - (envPtr)->exceptArrayPtr[(index)].codeOffset))
#define ExceptionRangeTarget(envPtr, index, targetType) \
((envPtr)->exceptArrayPtr[(index)].targetType = CurrentOffset(envPtr))
/*
* Prototypes for procedures defined later in this file:
*/
static ClientData DupDictUpdateInfo(ClientData clientData);
static void FreeDictUpdateInfo(ClientData clientData);
static void PrintDictUpdateInfo(ClientData clientData,
Tcl_Obj *appendObj, ByteCode *codePtr,
unsigned int pcOffset);
static ClientData DupForeachInfo(ClientData clientData);
static void FreeForeachInfo(ClientData clientData);
static void PrintForeachInfo(ClientData clientData,
Tcl_Obj *appendObj, ByteCode *codePtr,
unsigned int pcOffset);
static ClientData DupJumptableInfo(ClientData clientData);
static void FreeJumptableInfo(ClientData clientData);
static void PrintJumptableInfo(ClientData clientData,
Tcl_Obj *appendObj, ByteCode *codePtr,
unsigned int pcOffset);
static int PushVarName(Tcl_Interp *interp,
Tcl_Token *varTokenPtr, CompileEnv *envPtr,
int flags, int *localIndexPtr,
int *simpleVarNamePtr, int *isScalarPtr,
int line, int* clNext);
static int CompileAssociativeBinaryOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, const char *identity,
int instruction, CompileEnv *envPtr);
static int CompileComparisonOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, int instruction,
CompileEnv *envPtr);
static int CompileStrictlyBinaryOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, int instruction,
CompileEnv *envPtr);
static int CompileUnaryOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, int instruction,
CompileEnv *envPtr);
static void CompileReturnInternal(CompileEnv *envPtr,
unsigned char op, int code, int level,
Tcl_Obj *returnOpts);
#define PushVarNameWord(i,v,e,f,l,s,sc,word) \
PushVarName (i,v,e,f,l,s,sc, \
mapPtr->loc [eclIndex].line [(word)], \
mapPtr->loc [eclIndex].next [(word)])
/*
* Flags bits used by PushVarName.
*/
#define TCL_CREATE_VAR 1 /* Create a compiled local if none is found */
#define TCL_NO_LARGE_INDEX 2 /* Do not return localIndex value > 255 */
/*
* The structures below define the AuxData types defined in this file.
*/
AuxDataType tclForeachInfoType = {
"ForeachInfo", /* name */
DupForeachInfo, /* dupProc */
FreeForeachInfo, /* freeProc */
PrintForeachInfo /* printProc */
};
AuxDataType tclJumptableInfoType = {
"JumptableInfo", /* name */
DupJumptableInfo, /* dupProc */
FreeJumptableInfo, /* freeProc */
PrintJumptableInfo /* printProc */
};
AuxDataType tclDictUpdateInfoType = {
"DictUpdateInfo", /* name */
DupDictUpdateInfo, /* dupProc */
FreeDictUpdateInfo, /* freeProc */
PrintDictUpdateInfo /* printProc */
};
/*
*----------------------------------------------------------------------
*
* TclCompileAppendCmd --
*
* Procedure called to compile the "append" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "append" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileAppendCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *varTokenPtr, *valueTokenPtr;
int simpleVarName, isScalar, localIndex, numWords;
DefineLineInformation; /* TIP #280 */
numWords = parsePtr->numWords;
if (numWords == 1) {
return TCL_ERROR;
} else if (numWords == 2) {
/*
* append varName == set varName
*/
return TclCompileSetCmd(interp, parsePtr, cmdPtr, envPtr);
} else if (numWords > 3) {
/*
* APPEND instructions currently only handle one value.
*/
return TCL_ERROR;
}
/*
* Decide if we can use a frame slot for the var/array name or if we need
* to emit code to compute and push the name at runtime. We use a frame
* slot (entry in the array of local vars) if we are compiling a procedure
* body and if the name is simple text that does not include namespace
* qualifiers.
*/
varTokenPtr = TokenAfter(parsePtr->tokenPtr);
PushVarNameWord(interp, varTokenPtr, envPtr, TCL_CREATE_VAR,
&localIndex, &simpleVarName, &isScalar, 1);
/*
* We are doing an assignment, otherwise TclCompileSetCmd was called, so
* push the new value. This will need to be extended to push a value for
* each argument.
*/
if (numWords > 2) {
valueTokenPtr = TokenAfter(varTokenPtr);
CompileWord(envPtr, valueTokenPtr, interp, 2);
}
/*
* Emit instructions to set/get the variable.
*/
if (simpleVarName) {
if (isScalar) {
if (localIndex < 0) {
TclEmitOpcode(INST_APPEND_STK, envPtr);
} else if (localIndex <= 255) {
TclEmitInstInt1(INST_APPEND_SCALAR1, localIndex, envPtr);
} else {
TclEmitInstInt4(INST_APPEND_SCALAR4, localIndex, envPtr);
}
} else {
if (localIndex < 0) {
TclEmitOpcode(INST_APPEND_ARRAY_STK, envPtr);
} else if (localIndex <= 255) {
TclEmitInstInt1(INST_APPEND_ARRAY1, localIndex, envPtr);
} else {
TclEmitInstInt4(INST_APPEND_ARRAY4, localIndex, envPtr);
}
}
} else {
TclEmitOpcode(INST_APPEND_STK, envPtr);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileBreakCmd --
*
* Procedure called to compile the "break" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "break" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileBreakCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
if (parsePtr->numWords != 1) {
return TCL_ERROR;
}
/*
* Emit a break instruction.
*/
TclEmitOpcode(INST_BREAK, envPtr);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileCatchCmd --
*
* Procedure called to compile the "catch" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "catch" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileCatchCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
JumpFixup jumpFixup;
Tcl_Token *cmdTokenPtr, *resultNameTokenPtr, *optsNameTokenPtr;
const char *name;
int resultIndex, optsIndex, nameChars, range;
int savedStackDepth = envPtr->currStackDepth;
DefineLineInformation; /* TIP #280 */
/*
* If syntax does not match what we expect for [catch], do not compile.
* Let runtime checks determine if syntax has changed.
*/
if ((parsePtr->numWords < 2) || (parsePtr->numWords > 4)) {
return TCL_ERROR;
}
/*
* If variables were specified and the catch command is at global level
* (not in a procedure), don't compile it inline: the payoff is too small.
*/
if ((parsePtr->numWords >= 3) && (envPtr->procPtr == NULL)) {
return TCL_ERROR;
}
/*
* Make sure the variable names, if any, have no substitutions and just
* refer to local scalars.
*/
resultIndex = optsIndex = -1;
cmdTokenPtr = TokenAfter(parsePtr->tokenPtr);
if (parsePtr->numWords >= 3) {
resultNameTokenPtr = TokenAfter(cmdTokenPtr);
/* DGP */
if (resultNameTokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
return TCL_ERROR;
}
name = resultNameTokenPtr[1].start;
nameChars = resultNameTokenPtr[1].size;
if (!TclIsLocalScalar(name, nameChars)) {
return TCL_ERROR;
}
resultIndex = TclFindCompiledLocal(resultNameTokenPtr[1].start,
resultNameTokenPtr[1].size, /*create*/ 1, envPtr->procPtr);
/* DKF */
if (parsePtr->numWords == 4) {
optsNameTokenPtr = TokenAfter(resultNameTokenPtr);
if (optsNameTokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
return TCL_ERROR;
}
name = optsNameTokenPtr[1].start;
nameChars = optsNameTokenPtr[1].size;
if (!TclIsLocalScalar(name, nameChars)) {
return TCL_ERROR;
}
optsIndex = TclFindCompiledLocal(optsNameTokenPtr[1].start,
optsNameTokenPtr[1].size, /*create*/ 1, envPtr->procPtr);
}
}
/*
* We will compile the catch command. Emit a beginCatch instruction at the
* start of the catch body: the subcommand it controls.
*/
range = DeclareExceptionRange(envPtr, CATCH_EXCEPTION_RANGE);
TclEmitInstInt4(INST_BEGIN_CATCH4, range, envPtr);
/*
* If the body is a simple word, compile the instructions to eval it.
* Otherwise, compile instructions to substitute its text without
* catching, a catch instruction that resets the stack to what it was
* before substituting the body, and then an instruction to eval the body.
* Care has to be taken to register the correct startOffset for the catch
* range so that errors in the substitution are not catched [Bug 219184]
*/
SetLineInformation (1);
if (cmdTokenPtr->type == TCL_TOKEN_SIMPLE_WORD) {
ExceptionRangeStarts(envPtr, range);
CompileBody(envPtr, cmdTokenPtr, interp);
ExceptionRangeEnds(envPtr, range);
} else {
CompileTokens(envPtr, cmdTokenPtr, interp);
ExceptionRangeStarts(envPtr, range);
TclEmitOpcode(INST_EVAL_STK, envPtr);
ExceptionRangeEnds(envPtr, range);
}
/*
* The "no errors" epilogue code: store the body's result into the
* variable (if any), push "0" (TCL_OK) as the catch's "no error" result,
* and jump around the "error case" code. Note that we issue the push of
* the return options first so that if alterations happen to the current
* interpreter state during the writing of the variable, we won't see
* them; this results in a slightly complex instruction issuing flow
* (can't exchange, only duplicate and pop).
*/
if (resultIndex != -1) {
if (optsIndex != -1) {
TclEmitOpcode(INST_PUSH_RETURN_OPTIONS, envPtr);
TclEmitInstInt4(INST_OVER, 1, envPtr);
}
if (resultIndex <= 255) {
TclEmitInstInt1(INST_STORE_SCALAR1, resultIndex, envPtr);
} else {
TclEmitInstInt4(INST_STORE_SCALAR4, resultIndex, envPtr);
}
if (optsIndex != -1) {
TclEmitOpcode(INST_POP, envPtr);
if (optsIndex <= 255) {
TclEmitInstInt1(INST_STORE_SCALAR1, optsIndex, envPtr);
} else {
TclEmitInstInt4(INST_STORE_SCALAR4, optsIndex, envPtr);
}
TclEmitOpcode(INST_POP, envPtr);
}
}
TclEmitOpcode(INST_POP, envPtr);
PushLiteral(envPtr, "0", 1);
TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP, &jumpFixup);
/*
* The "error case" code: store the body's result into the variable (if
* any), then push the error result code. The initial PC offset here is
* the catch's error target. Note that if we are saving the return
* options, we do that first so the preservation cannot get affected by
* any intermediate result handling.
*/
envPtr->currStackDepth = savedStackDepth;
ExceptionRangeTarget(envPtr, range, catchOffset);
if (resultIndex != -1) {
if (optsIndex != -1) {
TclEmitOpcode(INST_PUSH_RETURN_OPTIONS, envPtr);
}
TclEmitOpcode(INST_PUSH_RESULT, envPtr);
if (resultIndex <= 255) {
TclEmitInstInt1(INST_STORE_SCALAR1, resultIndex, envPtr);
} else {
TclEmitInstInt4(INST_STORE_SCALAR4, resultIndex, envPtr);
}
TclEmitOpcode(INST_POP, envPtr);
if (optsIndex != -1) {
if (optsIndex <= 255) {
TclEmitInstInt1(INST_STORE_SCALAR1, optsIndex, envPtr);
} else {
TclEmitInstInt4(INST_STORE_SCALAR4, optsIndex, envPtr);
}
TclEmitOpcode(INST_POP, envPtr);
}
}
TclEmitOpcode(INST_PUSH_RETURN_CODE, envPtr);
/*
* Update the target of the jump after the "no errors" code, then emit an
* endCatch instruction at the end of the catch command.
*/
if (TclFixupForwardJumpToHere(envPtr, &jumpFixup, 127)) {
Tcl_Panic("TclCompileCatchCmd: bad jump distance %d",
CurrentOffset(envPtr) - jumpFixup.codeOffset);
}
TclEmitOpcode(INST_END_CATCH, envPtr);
envPtr->currStackDepth = savedStackDepth + 1;
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileContinueCmd --
*
* Procedure called to compile the "continue" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "continue" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileContinueCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
/*
* There should be no argument after the "continue".
*/
if (parsePtr->numWords != 1) {
return TCL_ERROR;
}
/*
* Emit a continue instruction.
*/
TclEmitOpcode(INST_CONTINUE, envPtr);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileDict*Cmd --
*
* Functions called to compile "dict" sucommands.
*
* Results:
* All return TCL_OK for a successful compile, and TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "dict" subcommand at
* runtime.
*
* Notes:
* The following commands are in fairly common use and are possibly worth
* bytecoding:
* dict append
* dict create [*]
* dict exists [*]
* dict for
* dict get [*]
* dict incr
* dict keys [*]
* dict lappend
* dict set
* dict unset
*
* In practice, those that are pure-value operators (marked with [*]) can
* probably be left alone (except perhaps [dict get] which is very very
* common) and [dict update] should be considered instead (really big
* win!)
*
*----------------------------------------------------------------------
*/
int
TclCompileDictSetCmd(
Tcl_Interp *interp, /* Used for looking up stuff. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *tokenPtr;
int numWords, i;
Proc *procPtr = envPtr->procPtr;
DefineLineInformation; /* TIP #280 */
Tcl_Token *varTokenPtr;
int dictVarIndex, nameChars;
const char *name;
/*
* There must be at least one argument after the command.
*/
if (parsePtr->numWords < 4 || procPtr == NULL) {
return TCL_ERROR;
}
/*
* The dictionary variable must be a local scalar that is knowable at
* compile time; anything else exceeds the complexity of the opcode. So
* discover what the index is.
*/
varTokenPtr = TokenAfter(parsePtr->tokenPtr);
if (varTokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
return TCL_ERROR;
}
name = varTokenPtr[1].start;
nameChars = varTokenPtr[1].size;
if (!TclIsLocalScalar(name, nameChars)) {
return TCL_ERROR;
}
dictVarIndex = TclFindCompiledLocal(name, nameChars, 1, procPtr);
/*
* Remaining words (key path and value to set) can be handled normally.
*/
tokenPtr = TokenAfter(varTokenPtr);
numWords = parsePtr->numWords-1;
for (i=1 ; i<numWords ; i++) {
CompileWord(envPtr, tokenPtr, interp, i);
tokenPtr = TokenAfter(tokenPtr);
}
/*
* Now emit the instruction to do the dict manipulation.
*/
TclEmitInstInt4( INST_DICT_SET, numWords-2, envPtr);
TclEmitInt4( dictVarIndex, envPtr);
return TCL_OK;
}
int
TclCompileDictIncrCmd(
Tcl_Interp *interp, /* Used for looking up stuff. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Proc *procPtr = envPtr->procPtr;
DefineLineInformation; /* TIP #280 */
Tcl_Token *varTokenPtr, *keyTokenPtr;
int dictVarIndex, nameChars, incrAmount;
const char *name;
/*
* There must be at least two arguments after the command.
*/
if (parsePtr->numWords < 3 || parsePtr->numWords > 4 || procPtr == NULL) {
return TCL_ERROR;
}
varTokenPtr = TokenAfter(parsePtr->tokenPtr);
keyTokenPtr = TokenAfter(varTokenPtr);
/*
* Parse the increment amount, if present.
*/
if (parsePtr->numWords == 4) {
const char *word;
int numBytes, code;
Tcl_Token *incrTokenPtr;
Tcl_Obj *intObj;
incrTokenPtr = TokenAfter(keyTokenPtr);
if (incrTokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
return TCL_ERROR;
}
word = incrTokenPtr[1].start;
numBytes = incrTokenPtr[1].size;
intObj = Tcl_NewStringObj(word, numBytes);
Tcl_IncrRefCount(intObj);
code = TclGetIntFromObj(NULL, intObj, &incrAmount);
TclDecrRefCount(intObj);
if (code != TCL_OK) {
return TCL_ERROR;
}
} else {
incrAmount = 1;
}
/*
* The dictionary variable must be a local scalar that is knowable at
* compile time; anything else exceeds the complexity of the opcode. So
* discover what the index is.
*/
if (varTokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
return TCL_ERROR;
}
name = varTokenPtr[1].start;
nameChars = varTokenPtr[1].size;
if (!TclIsLocalScalar(name, nameChars)) {
return TCL_ERROR;
}
dictVarIndex = TclFindCompiledLocal(name, nameChars, 1, procPtr);
/*
* Emit the key and the code to actually do the increment.
*/
CompileWord(envPtr, keyTokenPtr, interp, 3);
TclEmitInstInt4( INST_DICT_INCR_IMM, incrAmount, envPtr);
TclEmitInt4( dictVarIndex, envPtr);
return TCL_OK;
}
int
TclCompileDictGetCmd(
Tcl_Interp *interp, /* Used for looking up stuff. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *tokenPtr;
int numWords, i;
DefineLineInformation; /* TIP #280 */
/*
* There must be at least two arguments after the command (the single-arg
* case is legal, but too special and magic for us to deal with here).
*/
if (parsePtr->numWords < 3) {
return TCL_ERROR;
}
tokenPtr = TokenAfter(parsePtr->tokenPtr);
numWords = parsePtr->numWords-1;
/*
* Only compile this because we need INST_DICT_GET anyway.
*/
for (i=0 ; i<numWords ; i++) {
CompileWord(envPtr, tokenPtr, interp, i);
tokenPtr = TokenAfter(tokenPtr);
}
TclEmitInstInt4(INST_DICT_GET, numWords-1, envPtr);
return TCL_OK;
}
int
TclCompileDictForCmd(
Tcl_Interp *interp, /* Used for looking up stuff. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Proc *procPtr = envPtr->procPtr;
DefineLineInformation; /* TIP #280 */
Tcl_Token *varsTokenPtr, *dictTokenPtr, *bodyTokenPtr;
int keyVarIndex, valueVarIndex, nameChars, loopRange, catchRange;
int infoIndex, jumpDisplacement, bodyTargetOffset, emptyTargetOffset;
int numVars, endTargetOffset;
int savedStackDepth = envPtr->currStackDepth;
/* Needed because jumps confuse the stack
* space calculator. */
const char **argv;
Tcl_DString buffer;
/*
* There must be at least three argument after the command.
*/
if (parsePtr->numWords != 4 || procPtr == NULL) {
return TCL_ERROR;
}
varsTokenPtr = TokenAfter(parsePtr->tokenPtr);
dictTokenPtr = TokenAfter(varsTokenPtr);
bodyTokenPtr = TokenAfter(dictTokenPtr);
if (varsTokenPtr->type != TCL_TOKEN_SIMPLE_WORD ||
bodyTokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
return TCL_ERROR;
}
/*
* Check we've got a pair of variables and that they are local variables.
* Then extract their indices in the LVT.
*/
Tcl_DStringInit(&buffer);
Tcl_DStringAppend(&buffer, varsTokenPtr[1].start, varsTokenPtr[1].size);
if (Tcl_SplitList(NULL, Tcl_DStringValue(&buffer), &numVars,
&argv) != TCL_OK) {
Tcl_DStringFree(&buffer);
return TCL_ERROR;
}
Tcl_DStringFree(&buffer);
if (numVars != 2) {
ckfree((char *) argv);
return TCL_ERROR;
}
nameChars = strlen(argv[0]);
if (!TclIsLocalScalar(argv[0], nameChars)) {
ckfree((char *) argv);
return TCL_ERROR;
}
keyVarIndex = TclFindCompiledLocal(argv[0], nameChars, 1, procPtr);
nameChars = strlen(argv[1]);
if (!TclIsLocalScalar(argv[1], nameChars)) {
ckfree((char *) argv);
return TCL_ERROR;
}
valueVarIndex = TclFindCompiledLocal(argv[1], nameChars, 1, procPtr);
ckfree((char *) argv);
/*
* Allocate a temporary variable to store the iterator reference. The
* variable will contain a Tcl_DictSearch reference which will be
* allocated by INST_DICT_FIRST and disposed when the variable is unset
* (at which point it should also have been finished with).
*/
infoIndex = TclFindCompiledLocal(NULL, 0, 1, procPtr);
/*
* Preparation complete; issue instructions. Note that this code issues
* fixed-sized jumps. That simplifies things a lot!
*
* First up, get the dictionary and start the iteration. No catching of
* errors at this point.
*/
CompileWord(envPtr, dictTokenPtr, interp, 3);
TclEmitInstInt4( INST_DICT_FIRST, infoIndex, envPtr);
emptyTargetOffset = CurrentOffset(envPtr);
TclEmitInstInt4( INST_JUMP_TRUE4, 0, envPtr);
/*
* Now we catch errors from here on so that we can finalize the search
* started by Tcl_DictObjFirst above.
*/
catchRange = DeclareExceptionRange(envPtr, CATCH_EXCEPTION_RANGE);
TclEmitInstInt4( INST_BEGIN_CATCH4, catchRange, envPtr);
ExceptionRangeStarts(envPtr, catchRange);
/*
* Inside the iteration, write the loop variables.
*/
bodyTargetOffset = CurrentOffset(envPtr);
TclEmitInstInt4( INST_STORE_SCALAR4, keyVarIndex, envPtr);
TclEmitOpcode( INST_POP, envPtr);
TclEmitInstInt4( INST_STORE_SCALAR4, valueVarIndex, envPtr);
TclEmitOpcode( INST_POP, envPtr);
/*
* Set up the loop exception targets.
*/
loopRange = DeclareExceptionRange(envPtr, LOOP_EXCEPTION_RANGE);
ExceptionRangeStarts(envPtr, loopRange);
/*
* Compile the loop body itself. It should be stack-neutral.
*/
SetLineInformation (4);
CompileBody(envPtr, bodyTokenPtr, interp);
TclEmitOpcode( INST_POP, envPtr);
/*
* Both exception target ranges (error and loop) end here.
*/
ExceptionRangeEnds(envPtr, loopRange);
ExceptionRangeEnds(envPtr, catchRange);
/*
* Continue (or just normally process) by getting the next pair of items
* from the dictionary and jumping back to the code to write them into
* variables if there is another pair.
*/
ExceptionRangeTarget(envPtr, loopRange, continueOffset);
TclEmitInstInt4( INST_DICT_NEXT, infoIndex, envPtr);
jumpDisplacement = bodyTargetOffset - CurrentOffset(envPtr);
TclEmitInstInt4( INST_JUMP_FALSE4, jumpDisplacement, envPtr);
TclEmitOpcode( INST_POP, envPtr);
TclEmitOpcode( INST_POP, envPtr);
/*
* Now do the final cleanup for the no-error case (this is where we break
* out of the loop to) by force-terminating the iteration (if not already
* terminated), ditching the exception info and jumping to the last
* instruction for this command. In theory, this could be done using the
* "finally" clause (next generated) but this is faster.
*/
ExceptionRangeTarget(envPtr, loopRange, breakOffset);
TclEmitInstInt4( INST_DICT_DONE, infoIndex, envPtr);
TclEmitOpcode( INST_END_CATCH, envPtr);
endTargetOffset = CurrentOffset(envPtr);
TclEmitInstInt4( INST_JUMP4, 0, envPtr);
/*
* Error handler "finally" clause, which force-terminates the iteration
* and rethrows the error.
*/
ExceptionRangeTarget(envPtr, catchRange, catchOffset);
TclEmitOpcode( INST_PUSH_RETURN_OPTIONS, envPtr);
TclEmitOpcode( INST_PUSH_RESULT, envPtr);
TclEmitInstInt4( INST_DICT_DONE, infoIndex, envPtr);
TclEmitOpcode( INST_END_CATCH, envPtr);
TclEmitOpcode( INST_RETURN_STK, envPtr);
/*
* Otherwise we're done (the jump after the DICT_FIRST points here) and we
* need to pop the bogus key/value pair (pushed to keep stack calculations
* easy!) Note that we skip the END_CATCH. [Bug 1382528]
*/
envPtr->currStackDepth = savedStackDepth+2;
jumpDisplacement = CurrentOffset(envPtr) - emptyTargetOffset;
TclUpdateInstInt4AtPc(INST_JUMP_TRUE4, jumpDisplacement,
envPtr->codeStart + emptyTargetOffset);
TclEmitOpcode( INST_POP, envPtr);
TclEmitOpcode( INST_POP, envPtr);
TclEmitInstInt4( INST_DICT_DONE, infoIndex, envPtr);
/*
* Final stage of the command (normal case) is that we push an empty
* object. This is done last to promote peephole optimization when it's
* dropped immediately.
*/
jumpDisplacement = CurrentOffset(envPtr) - endTargetOffset;
TclUpdateInstInt4AtPc(INST_JUMP4, jumpDisplacement,
envPtr->codeStart + endTargetOffset);
PushLiteral(envPtr, "", 0);
return TCL_OK;
}
int
TclCompileDictUpdateCmd(
Tcl_Interp *interp, /* Used for looking up stuff. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Proc *procPtr = envPtr->procPtr;
DefineLineInformation; /* TIP #280 */
const char *name;
int i, nameChars, dictIndex, numVars, range, infoIndex;
Tcl_Token **keyTokenPtrs, *dictVarTokenPtr, *bodyTokenPtr, *tokenPtr;
DictUpdateInfo *duiPtr;
JumpFixup jumpFixup;
/*
* There must be at least one argument after the command.
*/
if (parsePtr->numWords < 5 || procPtr == NULL) {
return TCL_ERROR;
}
/*
* Parse the command. Expect the following:
* dict update <lit(eral)> <any> <lit> ?<any> <lit> ...? <lit>
*/
if ((parsePtr->numWords - 1) & 1) {
return TCL_ERROR;
}
numVars = (parsePtr->numWords - 3) / 2;
/*
* The dictionary variable must be a local scalar that is knowable at
* compile time; anything else exceeds the complexity of the opcode. So
* discover what the index is.
*/
dictVarTokenPtr = TokenAfter(parsePtr->tokenPtr);
if (dictVarTokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
return TCL_ERROR;
}
name = dictVarTokenPtr[1].start;
nameChars = dictVarTokenPtr[1].size;
if (!TclIsLocalScalar(name, nameChars)) {
return TCL_ERROR;
}
dictIndex = TclFindCompiledLocal(name, nameChars, 1, procPtr);
/*
* Assemble the instruction metadata. This is complex enough that it is
* represented as auxData; it holds an ordered list of variable indices
* that are to be used.
*/
duiPtr = (DictUpdateInfo *)
ckalloc(sizeof(DictUpdateInfo) + sizeof(int) * (numVars - 1));
duiPtr->length = numVars;
keyTokenPtrs = (Tcl_Token **) TclStackAlloc(interp,
sizeof(Tcl_Token *) * numVars);
tokenPtr = TokenAfter(dictVarTokenPtr);
for (i=0 ; i<numVars ; i++) {
/*
* Put keys to one side for later compilation to bytecode.
*/
keyTokenPtrs[i] = tokenPtr;
/*
* Variables first need to be checked for sanity.
*/
tokenPtr = TokenAfter(tokenPtr);
if (tokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
ckfree((char *) duiPtr);
TclStackFree(interp, keyTokenPtrs);
return TCL_ERROR;
}
name = tokenPtr[1].start;
nameChars = tokenPtr[1].size;
if (!TclIsLocalScalar(name, nameChars)) {
ckfree((char *) duiPtr);
TclStackFree(interp, keyTokenPtrs);
return TCL_ERROR;
}
/*
* Stash the index in the auxiliary data.
*/
duiPtr->varIndices[i] =
TclFindCompiledLocal(name, nameChars, 1, procPtr);
tokenPtr = TokenAfter(tokenPtr);
}
if (tokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
ckfree((char *) duiPtr);
TclStackFree(interp, keyTokenPtrs);
return TCL_ERROR;
}
bodyTokenPtr = tokenPtr;
/*
* The list of variables to bind is stored in auxiliary data so that it
* can't be snagged by literal sharing and forced to shimmer dangerously.
*/
infoIndex = TclCreateAuxData(duiPtr, &tclDictUpdateInfoType, envPtr);
for (i=0 ; i<numVars ; i++) {
CompileWord(envPtr, keyTokenPtrs[i], interp, i);
}
TclEmitInstInt4( INST_LIST, numVars, envPtr);
TclEmitInstInt4( INST_DICT_UPDATE_START, dictIndex, envPtr);
TclEmitInt4( infoIndex, envPtr);
range = DeclareExceptionRange(envPtr, CATCH_EXCEPTION_RANGE);
TclEmitInstInt4( INST_BEGIN_CATCH4, range, envPtr);
ExceptionRangeStarts(envPtr, range);
CompileBody(envPtr, bodyTokenPtr, interp);
ExceptionRangeEnds(envPtr, range);
/*
* Normal termination code: the stack has the key list below the result of
* the body evaluation: swap them and finish the update code.
*/
TclEmitOpcode( INST_END_CATCH, envPtr);
TclEmitInstInt4( INST_REVERSE, 2, envPtr);
TclEmitInstInt4( INST_DICT_UPDATE_END, dictIndex, envPtr);
TclEmitInt4( infoIndex, envPtr);
/*
* Jump around the exceptional termination code.
*/
TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP, &jumpFixup);
/*
* Termination code for non-ok returns: stash the result and return
* options in the stack, bring up the key list, finish the update code,
* and finally return with the catched return data
*/
ExceptionRangeTarget(envPtr, range, catchOffset);
TclEmitOpcode( INST_PUSH_RESULT, envPtr);
TclEmitOpcode( INST_PUSH_RETURN_OPTIONS, envPtr);
TclEmitOpcode( INST_END_CATCH, envPtr);
TclEmitInstInt4( INST_REVERSE, 3, envPtr);
TclEmitInstInt4( INST_DICT_UPDATE_END, dictIndex, envPtr);
TclEmitInt4( infoIndex, envPtr);
TclEmitOpcode( INST_RETURN_STK, envPtr);
if (TclFixupForwardJumpToHere(envPtr, &jumpFixup, 127)) {
Tcl_Panic("TclCompileDictCmd(update): bad jump distance %d",
CurrentOffset(envPtr) - jumpFixup.codeOffset);
}
TclStackFree(interp, keyTokenPtrs);
return TCL_OK;
}
int
TclCompileDictAppendCmd(
Tcl_Interp *interp, /* Used for looking up stuff. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Proc *procPtr = envPtr->procPtr;
DefineLineInformation; /* TIP #280 */
Tcl_Token *tokenPtr;
int i, dictVarIndex;
/*
* There must be at least two argument after the command. And we impose an
* (arbirary) safe limit; anyone exceeding it should stop worrying about
* speed quite so much. ;-)
*/
if (parsePtr->numWords<4 || parsePtr->numWords>100 || procPtr==NULL) {
return TCL_ERROR;
}
/*
* Get the index of the local variable that we will be working with.
*/
tokenPtr = TokenAfter(parsePtr->tokenPtr);
if (tokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
return TCL_ERROR;
} else {
register const char *name = tokenPtr[1].start;
register int nameChars = tokenPtr[1].size;
if (!TclIsLocalScalar(name, nameChars)) {
return TCL_ERROR;
}
dictVarIndex = TclFindCompiledLocal(name, nameChars, 1, procPtr);
}
/*
* Produce the string to concatenate onto the dictionary entry.
*/
tokenPtr = TokenAfter(tokenPtr);
for (i=2 ; i<parsePtr->numWords ; i++) {
CompileWord(envPtr, tokenPtr, interp, i);
tokenPtr = TokenAfter(tokenPtr);
}
if (parsePtr->numWords > 4) {
TclEmitInstInt1(INST_CONCAT1, parsePtr->numWords-3, envPtr);
}
/*
* Do the concatenation.
*/
TclEmitInstInt4(INST_DICT_APPEND, dictVarIndex, envPtr);
return TCL_OK;
}
int
TclCompileDictLappendCmd(
Tcl_Interp *interp, /* Used for looking up stuff. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Proc *procPtr = envPtr->procPtr;
DefineLineInformation; /* TIP #280 */
Tcl_Token *varTokenPtr, *keyTokenPtr, *valueTokenPtr;
int dictVarIndex, nameChars;
const char *name;
/*
* There must be three arguments after the command.
*/
if (parsePtr->numWords != 4 || procPtr == NULL) {
return TCL_ERROR;
}
varTokenPtr = TokenAfter(parsePtr->tokenPtr);
keyTokenPtr = TokenAfter(varTokenPtr);
valueTokenPtr = TokenAfter(keyTokenPtr);
if (varTokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
return TCL_ERROR;
}
name = varTokenPtr[1].start;
nameChars = varTokenPtr[1].size;
if (!TclIsLocalScalar(name, nameChars)) {
return TCL_ERROR;
}
dictVarIndex = TclFindCompiledLocal(name, nameChars, 1, procPtr);
CompileWord(envPtr, keyTokenPtr, interp, 3);
CompileWord(envPtr, valueTokenPtr, interp, 4);
TclEmitInstInt4( INST_DICT_LAPPEND, dictVarIndex, envPtr);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* DupDictUpdateInfo, FreeDictUpdateInfo --
*
* Functions to duplicate, release and print the aux data created for use
* with the INST_DICT_UPDATE_START and INST_DICT_UPDATE_END instructions.
*
* Results:
* DupDictUpdateInfo: a copy of the auxiliary data
* FreeDictUpdateInfo: none
* PrintDictUpdateInfo: none
*
* Side effects:
* DupDictUpdateInfo: allocates memory
* FreeDictUpdateInfo: releases memory
* PrintDictUpdateInfo: none
*
*----------------------------------------------------------------------
*/
static ClientData
DupDictUpdateInfo(
ClientData clientData)
{
DictUpdateInfo *dui1Ptr, *dui2Ptr;
unsigned len;
dui1Ptr = clientData;
len = sizeof(DictUpdateInfo) + sizeof(int) * (dui1Ptr->length - 1);
dui2Ptr = (DictUpdateInfo *) ckalloc(len);
memcpy(dui2Ptr, dui1Ptr, len);
return dui2Ptr;
}
static void
FreeDictUpdateInfo(
ClientData clientData)
{
ckfree(clientData);
}
static void
PrintDictUpdateInfo(
ClientData clientData,
Tcl_Obj *appendObj,
ByteCode *codePtr,
unsigned int pcOffset)
{
DictUpdateInfo *duiPtr = clientData;
int i;
for (i=0 ; i<duiPtr->length ; i++) {
if (i) {
Tcl_AppendToObj(appendObj, ", ", -1);
}
Tcl_AppendPrintfToObj(appendObj, "%%v%u", duiPtr->varIndices[i]);
}
}
/*
*----------------------------------------------------------------------
*
* TclCompileExprCmd --
*
* Procedure called to compile the "expr" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "expr" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileExprCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *firstWordPtr;
if (parsePtr->numWords == 1) {
return TCL_ERROR;
}
/*
* TIP #280: Use the per-word line information of the current command.
*/
envPtr->line = envPtr->extCmdMapPtr->loc[
envPtr->extCmdMapPtr->nuloc-1].line[1];
firstWordPtr = TokenAfter(parsePtr->tokenPtr);
TclCompileExprWords(interp, firstWordPtr, parsePtr->numWords-1, envPtr);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileForCmd --
*
* Procedure called to compile the "for" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "for" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileForCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *startTokenPtr, *testTokenPtr, *nextTokenPtr, *bodyTokenPtr;
JumpFixup jumpEvalCondFixup;
int testCodeOffset, bodyCodeOffset, nextCodeOffset, jumpDist;
int bodyRange, nextRange;
int savedStackDepth = envPtr->currStackDepth;
DefineLineInformation; /* TIP #280 */
if (parsePtr->numWords != 5) {
return TCL_ERROR;
}
/*
* If the test expression requires substitutions, don't compile the for
* command inline. E.g., the expression might cause the loop to never
* execute or execute forever, as in "for {} "$x > 5" {incr x} {}".
*/
startTokenPtr = TokenAfter(parsePtr->tokenPtr);
testTokenPtr = TokenAfter(startTokenPtr);
if (testTokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
return TCL_ERROR;
}
/*
* Bail out also if the body or the next expression require substitutions
* in order to insure correct behaviour [Bug 219166]
*/
nextTokenPtr = TokenAfter(testTokenPtr);
bodyTokenPtr = TokenAfter(nextTokenPtr);
if ((nextTokenPtr->type != TCL_TOKEN_SIMPLE_WORD)
|| (bodyTokenPtr->type != TCL_TOKEN_SIMPLE_WORD)) {
return TCL_ERROR;
}
/*
* Create ExceptionRange records for the body and the "next" command. The
* "next" command's ExceptionRange supports break but not continue (and
* has a -1 continueOffset).
*/
bodyRange = DeclareExceptionRange(envPtr, LOOP_EXCEPTION_RANGE);
nextRange = TclCreateExceptRange(LOOP_EXCEPTION_RANGE, envPtr);
/*
* Inline compile the initial command.
*/
SetLineInformation (1);
CompileBody(envPtr, startTokenPtr, interp);
TclEmitOpcode(INST_POP, envPtr);
/*
* Jump to the evaluation of the condition. This code uses the "loop
* rotation" optimisation (which eliminates one branch from the loop).
* "for start cond next body" produces then:
* start
* goto A
* B: body : bodyCodeOffset
* next : nextCodeOffset, continueOffset
* A: cond -> result : testCodeOffset
* if (result) goto B
*/
TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP, &jumpEvalCondFixup);
/*
* Compile the loop body.
*/
bodyCodeOffset = ExceptionRangeStarts(envPtr, bodyRange);
SetLineInformation (4);
CompileBody(envPtr, bodyTokenPtr, interp);
ExceptionRangeEnds(envPtr, bodyRange);
envPtr->currStackDepth = savedStackDepth + 1;
TclEmitOpcode(INST_POP, envPtr);
/*
* Compile the "next" subcommand.
*/
envPtr->currStackDepth = savedStackDepth;
nextCodeOffset = ExceptionRangeStarts(envPtr, nextRange);
SetLineInformation (3);
CompileBody(envPtr, nextTokenPtr, interp);
ExceptionRangeEnds(envPtr, nextRange);
envPtr->currStackDepth = savedStackDepth + 1;
TclEmitOpcode(INST_POP, envPtr);
envPtr->currStackDepth = savedStackDepth;
/*
* Compile the test expression then emit the conditional jump that
* terminates the for.
*/
testCodeOffset = CurrentOffset(envPtr);
jumpDist = testCodeOffset - jumpEvalCondFixup.codeOffset;
if (TclFixupForwardJump(envPtr, &jumpEvalCondFixup, jumpDist, 127)) {
bodyCodeOffset += 3;
nextCodeOffset += 3;
testCodeOffset += 3;
}
SetLineInformation (2);
envPtr->currStackDepth = savedStackDepth;
TclCompileExprWords(interp, testTokenPtr, 1, envPtr);
envPtr->currStackDepth = savedStackDepth + 1;
jumpDist = CurrentOffset(envPtr) - bodyCodeOffset;
if (jumpDist > 127) {
TclEmitInstInt4(INST_JUMP_TRUE4, -jumpDist, envPtr);
} else {
TclEmitInstInt1(INST_JUMP_TRUE1, -jumpDist, envPtr);
}
/*
* Fix the starting points of the exception ranges (may have moved due to
* jump type modification) and set where the exceptions target.
*/
envPtr->exceptArrayPtr[bodyRange].codeOffset = bodyCodeOffset;
envPtr->exceptArrayPtr[bodyRange].continueOffset = nextCodeOffset;
envPtr->exceptArrayPtr[nextRange].codeOffset = nextCodeOffset;
ExceptionRangeTarget(envPtr, bodyRange, breakOffset);
ExceptionRangeTarget(envPtr, nextRange, breakOffset);
/*
* The for command's result is an empty string.
*/
envPtr->currStackDepth = savedStackDepth;
PushLiteral(envPtr, "", 0);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileForeachCmd --
*
* Procedure called to compile the "foreach" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "foreach" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileForeachCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Proc *procPtr = envPtr->procPtr;
ForeachInfo *infoPtr; /* Points to the structure describing this
* foreach command. Stored in a AuxData
* record in the ByteCode. */
int firstValueTemp; /* Index of the first temp var in the frame
* used to point to a value list. */
int loopCtTemp; /* Index of temp var holding the loop's
* iteration count. */
Tcl_Token *tokenPtr, *bodyTokenPtr;
unsigned char *jumpPc;
JumpFixup jumpFalseFixup;
int jumpBackDist, jumpBackOffset, infoIndex, range, bodyIndex;
int numWords, numLists, numVars, loopIndex, tempVar, i, j, code;
int savedStackDepth = envPtr->currStackDepth;
DefineLineInformation; /* TIP #280 */
/*
* We parse the variable list argument words and create two arrays:
* varcList[i] is number of variables in i-th var list.
* varvList[i] points to array of var names in i-th var list.
*/
int *varcList;
const char ***varvList;
/*
* If the foreach command isn't in a procedure, don't compile it inline:
* the payoff is too small.
*/
if (procPtr == NULL) {
return TCL_ERROR;
}
numWords = parsePtr->numWords;
if ((numWords < 4) || (numWords%2 != 0)) {
return TCL_ERROR;
}
/*
* Bail out if the body requires substitutions in order to insure correct
* behaviour. [Bug 219166]
*/
for (i = 0, tokenPtr = parsePtr->tokenPtr; i < numWords-1; i++) {
tokenPtr = TokenAfter(tokenPtr);
}
bodyTokenPtr = tokenPtr;
if (bodyTokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
return TCL_ERROR;
}
bodyIndex = i-1;
/*
* Allocate storage for the varcList and varvList arrays if necessary.
*/
numLists = (numWords - 2)/2;
varcList = (int *) TclStackAlloc(interp, numLists * sizeof(int));
memset(varcList, 0, numLists * sizeof(int));
varvList = (const char ***) TclStackAlloc(interp,
numLists * sizeof(const char **));
memset((char*) varvList, 0, numLists * sizeof(const char **));
/*
* Break up each var list and set the varcList and varvList arrays. Don't
* compile the foreach inline if any var name needs substitutions or isn't
* a scalar, or if any var list needs substitutions.
*/
loopIndex = 0;
for (i = 0, tokenPtr = parsePtr->tokenPtr;
i < numWords-1;
i++, tokenPtr = TokenAfter(tokenPtr)) {
Tcl_DString varList;
if (i%2 != 1) {
continue;
}
if (tokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
code = TCL_ERROR;
goto done;
}
/*
* Lots of copying going on here. Need a ListObj wizard to show a
* better way.
*/
Tcl_DStringInit(&varList);
Tcl_DStringAppend(&varList, tokenPtr[1].start, tokenPtr[1].size);
code = Tcl_SplitList(interp, Tcl_DStringValue(&varList),
&varcList[loopIndex], &varvList[loopIndex]);
Tcl_DStringFree(&varList);
if (code != TCL_OK) {
code = TCL_ERROR;
goto done;
}
numVars = varcList[loopIndex];
/*
* If the variable list is empty, we can enter an infinite loop when
* the interpreted version would not. Take care to ensure this does
* not happen. [Bug 1671138]
*/
if (numVars == 0) {
code = TCL_ERROR;
goto done;
}
for (j = 0; j < numVars; j++) {
const char *varName = varvList[loopIndex][j];
if (!TclIsLocalScalar(varName, (int) strlen(varName))) {
code = TCL_ERROR;
goto done;
}
}
loopIndex++;
}
/*
* We will compile the foreach command. Reserve (numLists + 1) temporary
* variables:
* - numLists temps to hold each value list
* - 1 temp for the loop counter (index of next element in each list)
*
* At this time we don't try to reuse temporaries; if there are two
* nonoverlapping foreach loops, they don't share any temps.
*/
code = TCL_OK;
firstValueTemp = -1;
for (loopIndex = 0; loopIndex < numLists; loopIndex++) {
tempVar = TclFindCompiledLocal(NULL, /*nameChars*/ 0,
/*create*/ 1, procPtr);
if (loopIndex == 0) {
firstValueTemp = tempVar;
}
}
loopCtTemp = TclFindCompiledLocal(NULL, /*nameChars*/ 0,
/*create*/ 1, procPtr);
/*
* Create and initialize the ForeachInfo and ForeachVarList data
* structures describing this command. Then create a AuxData record
* pointing to the ForeachInfo structure.
*/
infoPtr = (ForeachInfo *) ckalloc((unsigned)
sizeof(ForeachInfo) + numLists*sizeof(ForeachVarList *));
infoPtr->numLists = numLists;
infoPtr->firstValueTemp = firstValueTemp;
infoPtr->loopCtTemp = loopCtTemp;
for (loopIndex = 0; loopIndex < numLists; loopIndex++) {
ForeachVarList *varListPtr;
numVars = varcList[loopIndex];
varListPtr = (ForeachVarList *) ckalloc((unsigned)
sizeof(ForeachVarList) + numVars*sizeof(int));
varListPtr->numVars = numVars;
for (j = 0; j < numVars; j++) {
const char *varName = varvList[loopIndex][j];
int nameChars = strlen(varName);
varListPtr->varIndexes[j] = TclFindCompiledLocal(varName,
nameChars, /*create*/ 1, procPtr);
}
infoPtr->varLists[loopIndex] = varListPtr;
}
infoIndex = TclCreateAuxData(infoPtr, &tclForeachInfoType, envPtr);
/*
* Create an exception record to handle [break] and [continue].
*/
range = DeclareExceptionRange(envPtr, LOOP_EXCEPTION_RANGE);
/*
* Evaluate then store each value list in the associated temporary.
*/
loopIndex = 0;
for (i = 0, tokenPtr = parsePtr->tokenPtr;
i < numWords-1;
i++, tokenPtr = TokenAfter(tokenPtr)) {
if ((i%2 == 0) && (i > 0)) {
SetLineInformation (i);
CompileTokens(envPtr, tokenPtr, interp);
tempVar = (firstValueTemp + loopIndex);
if (tempVar <= 255) {
TclEmitInstInt1(INST_STORE_SCALAR1, tempVar, envPtr);
} else {
TclEmitInstInt4(INST_STORE_SCALAR4, tempVar, envPtr);
}
TclEmitOpcode(INST_POP, envPtr);
loopIndex++;
}
}
/*
* Initialize the temporary var that holds the count of loop iterations.
*/
TclEmitInstInt4(INST_FOREACH_START4, infoIndex, envPtr);
/*
* Top of loop code: assign each loop variable and check whether
* to terminate the loop.
*/
ExceptionRangeTarget(envPtr, range, continueOffset);
TclEmitInstInt4(INST_FOREACH_STEP4, infoIndex, envPtr);
TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, &jumpFalseFixup);
/*
* Inline compile the loop body.
*/
SetLineInformation (bodyIndex);
ExceptionRangeStarts(envPtr, range);
CompileBody(envPtr, bodyTokenPtr, interp);
ExceptionRangeEnds(envPtr, range);
envPtr->currStackDepth = savedStackDepth + 1;
TclEmitOpcode(INST_POP, envPtr);
/*
* Jump back to the test at the top of the loop. Generate a 4 byte jump if
* the distance to the test is > 120 bytes. This is conservative and
* ensures that we won't have to replace this jump if we later need to
* replace the ifFalse jump with a 4 byte jump.
*/
jumpBackOffset = CurrentOffset(envPtr);
jumpBackDist = jumpBackOffset-envPtr->exceptArrayPtr[range].continueOffset;
if (jumpBackDist > 120) {
TclEmitInstInt4(INST_JUMP4, -jumpBackDist, envPtr);
} else {
TclEmitInstInt1(INST_JUMP1, -jumpBackDist, envPtr);
}
/*
* Fix the target of the jump after the foreach_step test.
*/
if (TclFixupForwardJumpToHere(envPtr, &jumpFalseFixup, 127)) {
/*
* Update the loop body's starting PC offset since it moved down.
*/
envPtr->exceptArrayPtr[range].codeOffset += 3;
/*
* Update the jump back to the test at the top of the loop since it
* also moved down 3 bytes.
*/
jumpBackOffset += 3;
jumpPc = (envPtr->codeStart + jumpBackOffset);
jumpBackDist += 3;
if (jumpBackDist > 120) {
TclUpdateInstInt4AtPc(INST_JUMP4, -jumpBackDist, jumpPc);
} else {
TclUpdateInstInt1AtPc(INST_JUMP1, -jumpBackDist, jumpPc);
}
}
/*
* Set the loop's break target.
*/
ExceptionRangeTarget(envPtr, range, breakOffset);
/*
* The foreach command's result is an empty string.
*/
envPtr->currStackDepth = savedStackDepth;
PushLiteral(envPtr, "", 0);
envPtr->currStackDepth = savedStackDepth + 1;
done:
for (loopIndex = 0; loopIndex < numLists; loopIndex++) {
if (varvList[loopIndex] != NULL) {
ckfree((char *) varvList[loopIndex]);
}
}
TclStackFree(interp, (void *)varvList);
TclStackFree(interp, varcList);
return code;
}
/*
*----------------------------------------------------------------------
*
* DupForeachInfo --
*
* This procedure duplicates a ForeachInfo structure created as auxiliary
* data during the compilation of a foreach command.
*
* Results:
* A pointer to a newly allocated copy of the existing ForeachInfo
* structure is returned.
*
* Side effects:
* Storage for the copied ForeachInfo record is allocated. If the
* original ForeachInfo structure pointed to any ForeachVarList records,
* these structures are also copied and pointers to them are stored in
* the new ForeachInfo record.
*
*----------------------------------------------------------------------
*/
static ClientData
DupForeachInfo(
ClientData clientData) /* The foreach command's compilation auxiliary
* data to duplicate. */
{
register ForeachInfo *srcPtr = clientData;
ForeachInfo *dupPtr;
register ForeachVarList *srcListPtr, *dupListPtr;
int numVars, i, j, numLists = srcPtr->numLists;
dupPtr = (ForeachInfo *) ckalloc((unsigned)
sizeof(ForeachInfo) + numLists*sizeof(ForeachVarList *));
dupPtr->numLists = numLists;
dupPtr->firstValueTemp = srcPtr->firstValueTemp;
dupPtr->loopCtTemp = srcPtr->loopCtTemp;
for (i = 0; i < numLists; i++) {
srcListPtr = srcPtr->varLists[i];
numVars = srcListPtr->numVars;
dupListPtr = (ForeachVarList *) ckalloc((unsigned)
sizeof(ForeachVarList) + numVars*sizeof(int));
dupListPtr->numVars = numVars;
for (j = 0; j < numVars; j++) {
dupListPtr->varIndexes[j] = srcListPtr->varIndexes[j];
}
dupPtr->varLists[i] = dupListPtr;
}
return dupPtr;
}
/*
*----------------------------------------------------------------------
*
* FreeForeachInfo --
*
* Procedure to free a ForeachInfo structure created as auxiliary data
* during the compilation of a foreach command.
*
* Results:
* None.
*
* Side effects:
* Storage for the ForeachInfo structure pointed to by the ClientData
* argument is freed as is any ForeachVarList record pointed to by the
* ForeachInfo structure.
*
*----------------------------------------------------------------------
*/
static void
FreeForeachInfo(
ClientData clientData) /* The foreach command's compilation auxiliary
* data to free. */
{
register ForeachInfo *infoPtr = clientData;
register ForeachVarList *listPtr;
int numLists = infoPtr->numLists;
register int i;
for (i = 0; i < numLists; i++) {
listPtr = infoPtr->varLists[i];
ckfree((char *) listPtr);
}
ckfree((char *) infoPtr);
}
/*
*----------------------------------------------------------------------
*
* PrintForeachInfo --
*
* Function to write a human-readable representation of a ForeachInfo
* structure to stdout for debugging.
*
* Results:
* None.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static void
PrintForeachInfo(
ClientData clientData,
Tcl_Obj *appendObj,
ByteCode *codePtr,
unsigned int pcOffset)
{
register ForeachInfo *infoPtr = clientData;
register ForeachVarList *varsPtr;
int i, j;
Tcl_AppendToObj(appendObj, "data=[", -1);
for (i=0 ; i<infoPtr->numLists ; i++) {
if (i) {
Tcl_AppendToObj(appendObj, ", ", -1);
}
Tcl_AppendPrintfToObj(appendObj, "%%v%u",
(unsigned) (infoPtr->firstValueTemp + i));
}
Tcl_AppendPrintfToObj(appendObj, "], loop=%%v%u",
(unsigned) infoPtr->loopCtTemp);
for (i=0 ; i<infoPtr->numLists ; i++) {
if (i) {
Tcl_AppendToObj(appendObj, ",", -1);
}
Tcl_AppendPrintfToObj(appendObj, "\n\t\t it%%v%u\t[",
(unsigned) (infoPtr->firstValueTemp + i));
varsPtr = infoPtr->varLists[i];
for (j=0 ; j<varsPtr->numVars ; j++) {
if (j) {
Tcl_AppendToObj(appendObj, ", ", -1);
}
Tcl_AppendPrintfToObj(appendObj, "%%v%u",
(unsigned) varsPtr->varIndexes[j]);
}
Tcl_AppendToObj(appendObj, "]", -1);
}
}
/*
*----------------------------------------------------------------------
*
* TclCompileIfCmd --
*
* Procedure called to compile the "if" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "if" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileIfCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
JumpFixupArray jumpFalseFixupArray;
/* Used to fix the ifFalse jump after each
* test when its target PC is determined. */
JumpFixupArray jumpEndFixupArray;
/* Used to fix the jump after each "then" body
* to the end of the "if" when that PC is
* determined. */
Tcl_Token *tokenPtr, *testTokenPtr;
int jumpIndex = 0; /* Avoid compiler warning. */
int jumpFalseDist, numWords, wordIdx, numBytes, j, code;
const char *word;
int savedStackDepth = envPtr->currStackDepth;
/* Saved stack depth at the start of the first
* test; the envPtr current depth is restored
* to this value at the start of each test. */
int realCond = 1; /* Set to 0 for static conditions:
* "if 0 {..}" */
int boolVal; /* Value of static condition. */
int compileScripts = 1;
DefineLineInformation; /* TIP #280 */
/*
* Only compile the "if" command if all arguments are simple words, in
* order to insure correct substitution [Bug 219166]
*/
tokenPtr = parsePtr->tokenPtr;
wordIdx = 0;
numWords = parsePtr->numWords;
for (wordIdx = 0; wordIdx < numWords; wordIdx++) {
if (tokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
return TCL_ERROR;
}
tokenPtr = TokenAfter(tokenPtr);
}
TclInitJumpFixupArray(&jumpFalseFixupArray);
TclInitJumpFixupArray(&jumpEndFixupArray);
code = TCL_OK;
/*
* Each iteration of this loop compiles one "if expr ?then? body" or
* "elseif expr ?then? body" clause.
*/
tokenPtr = parsePtr->tokenPtr;
wordIdx = 0;
while (wordIdx < numWords) {
/*
* Stop looping if the token isn't "if" or "elseif".
*/
word = tokenPtr[1].start;
numBytes = tokenPtr[1].size;
if ((tokenPtr == parsePtr->tokenPtr)
|| ((numBytes == 6) && (strncmp(word, "elseif", 6) == 0))) {
tokenPtr = TokenAfter(tokenPtr);
wordIdx++;
} else {
break;
}
if (wordIdx >= numWords) {
code = TCL_ERROR;
goto done;
}
/*
* Compile the test expression then emit the conditional jump around
* the "then" part.
*/
envPtr->currStackDepth = savedStackDepth;
testTokenPtr = tokenPtr;
if (realCond) {
/*
* Find out if the condition is a constant.
*/
Tcl_Obj *boolObj = Tcl_NewStringObj(testTokenPtr[1].start,
testTokenPtr[1].size);
Tcl_IncrRefCount(boolObj);
code = Tcl_GetBooleanFromObj(NULL, boolObj, &boolVal);
TclDecrRefCount(boolObj);
if (code == TCL_OK) {
/*
* A static condition.
*/
realCond = 0;
if (!boolVal) {
compileScripts = 0;
}
} else {
SetLineInformation (wordIdx);
Tcl_ResetResult(interp);
TclCompileExprWords(interp, testTokenPtr, 1, envPtr);
if (jumpFalseFixupArray.next >= jumpFalseFixupArray.end) {
TclExpandJumpFixupArray(&jumpFalseFixupArray);
}
jumpIndex = jumpFalseFixupArray.next;
jumpFalseFixupArray.next++;
TclEmitForwardJump(envPtr, TCL_FALSE_JUMP,
jumpFalseFixupArray.fixup+jumpIndex);
}
code = TCL_OK;
}
/*
* Skip over the optional "then" before the then clause.
*/
tokenPtr = TokenAfter(testTokenPtr);
wordIdx++;
if (wordIdx >= numWords) {
code = TCL_ERROR;
goto done;
}
if (tokenPtr->type == TCL_TOKEN_SIMPLE_WORD) {
word = tokenPtr[1].start;
numBytes = tokenPtr[1].size;
if ((numBytes == 4) && (strncmp(word, "then", 4) == 0)) {
tokenPtr = TokenAfter(tokenPtr);
wordIdx++;
if (wordIdx >= numWords) {
code = TCL_ERROR;
goto done;
}
}
}
/*
* Compile the "then" command body.
*/
if (compileScripts) {
SetLineInformation (wordIdx);
envPtr->currStackDepth = savedStackDepth;
CompileBody(envPtr, tokenPtr, interp);
}
if (realCond) {
/*
* Jump to the end of the "if" command. Both jumpFalseFixupArray
* and jumpEndFixupArray are indexed by "jumpIndex".
*/
if (jumpEndFixupArray.next >= jumpEndFixupArray.end) {
TclExpandJumpFixupArray(&jumpEndFixupArray);
}
jumpEndFixupArray.next++;
TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP,
jumpEndFixupArray.fixup+jumpIndex);
/*
* Fix the target of the jumpFalse after the test. Generate a 4
* byte jump if the distance is > 120 bytes. This is conservative,
* and ensures that we won't have to replace this jump if we later
* also need to replace the proceeding jump to the end of the "if"
* with a 4 byte jump.
*/
if (TclFixupForwardJumpToHere(envPtr,
jumpFalseFixupArray.fixup+jumpIndex, 120)) {
/*
* Adjust the code offset for the proceeding jump to the end
* of the "if" command.
*/
jumpEndFixupArray.fixup[jumpIndex].codeOffset += 3;
}
} else if (boolVal) {
/*
* We were processing an "if 1 {...}"; stop compiling scripts.
*/
compileScripts = 0;
} else {
/*
* We were processing an "if 0 {...}"; reset so that the rest
* (elseif, else) is compiled correctly.
*/
realCond = 1;
compileScripts = 1;
}
tokenPtr = TokenAfter(tokenPtr);
wordIdx++;
}
/*
* Restore the current stack depth in the environment; the "else" clause
* (or its default) will add 1 to this.
*/
envPtr->currStackDepth = savedStackDepth;
/*
* Check for the optional else clause. Do not compile anything if this was
* an "if 1 {...}" case.
*/
if ((wordIdx < numWords) && (tokenPtr->type == TCL_TOKEN_SIMPLE_WORD)) {
/*
* There is an else clause. Skip over the optional "else" word.
*/
word = tokenPtr[1].start;
numBytes = tokenPtr[1].size;
if ((numBytes == 4) && (strncmp(word, "else", 4) == 0)) {
tokenPtr = TokenAfter(tokenPtr);
wordIdx++;
if (wordIdx >= numWords) {
code = TCL_ERROR;
goto done;
}
}
if (compileScripts) {
/*
* Compile the else command body.
*/
SetLineInformation (wordIdx);
CompileBody(envPtr, tokenPtr, interp);
}
/*
* Make sure there are no words after the else clause.
*/
wordIdx++;
if (wordIdx < numWords) {
code = TCL_ERROR;
goto done;
}
} else {
/*
* No else clause: the "if" command's result is an empty string.
*/
if (compileScripts) {
PushLiteral(envPtr, "", 0);
}
}
/*
* Fix the unconditional jumps to the end of the "if" command.
*/
for (j = jumpEndFixupArray.next; j > 0; j--) {
jumpIndex = (j - 1); /* i.e. process the closest jump first. */
if (TclFixupForwardJumpToHere(envPtr,
jumpEndFixupArray.fixup+jumpIndex, 127)) {
/*
* Adjust the immediately preceeding "ifFalse" jump. We moved it's
* target (just after this jump) down three bytes.
*/
unsigned char *ifFalsePc = envPtr->codeStart
+ jumpFalseFixupArray.fixup[jumpIndex].codeOffset;
unsigned char opCode = *ifFalsePc;
if (opCode == INST_JUMP_FALSE1) {
jumpFalseDist = TclGetInt1AtPtr(ifFalsePc + 1);
jumpFalseDist += 3;
TclStoreInt1AtPtr(jumpFalseDist, (ifFalsePc + 1));
} else if (opCode == INST_JUMP_FALSE4) {
jumpFalseDist = TclGetInt4AtPtr(ifFalsePc + 1);
jumpFalseDist += 3;
TclStoreInt4AtPtr(jumpFalseDist, (ifFalsePc + 1));
} else {
Tcl_Panic("TclCompileIfCmd: unexpected opcode \"%d\" updating ifFalse jump", (int) opCode);
}
}
}
/*
* Free the jumpFixupArray array if malloc'ed storage was used.
*/
done:
envPtr->currStackDepth = savedStackDepth + 1;
TclFreeJumpFixupArray(&jumpFalseFixupArray);
TclFreeJumpFixupArray(&jumpEndFixupArray);
return code;
}
/*
*----------------------------------------------------------------------
*
* TclCompileIncrCmd --
*
* Procedure called to compile the "incr" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "incr" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileIncrCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *varTokenPtr, *incrTokenPtr;
int simpleVarName, isScalar, localIndex, haveImmValue, immValue;
DefineLineInformation; /* TIP #280 */
if ((parsePtr->numWords != 2) && (parsePtr->numWords != 3)) {
return TCL_ERROR;
}
varTokenPtr = TokenAfter(parsePtr->tokenPtr);
PushVarNameWord(interp, varTokenPtr, envPtr, TCL_NO_LARGE_INDEX|TCL_CREATE_VAR,
&localIndex, &simpleVarName, &isScalar, 1);
/*
* If an increment is given, push it, but see first if it's a small
* integer.
*/
haveImmValue = 0;
immValue = 1;
if (parsePtr->numWords == 3) {
incrTokenPtr = TokenAfter(varTokenPtr);
if (incrTokenPtr->type == TCL_TOKEN_SIMPLE_WORD) {
const char *word = incrTokenPtr[1].start;
int numBytes = incrTokenPtr[1].size;
int code;
Tcl_Obj *intObj = Tcl_NewStringObj(word, numBytes);
Tcl_IncrRefCount(intObj);
code = TclGetIntFromObj(NULL, intObj, &immValue);
TclDecrRefCount(intObj);
if ((code == TCL_OK) && (-127 <= immValue) && (immValue <= 127)) {
haveImmValue = 1;
}
if (!haveImmValue) {
PushLiteral(envPtr, word, numBytes);
}
} else {
SetLineInformation (2);
CompileTokens(envPtr, incrTokenPtr, interp);
}
} else { /* No incr amount given so use 1. */
haveImmValue = 1;
}
/*
* Emit the instruction to increment the variable.
*/
if (simpleVarName) {
if (isScalar) {
if (localIndex >= 0) {
if (haveImmValue) {
TclEmitInstInt1(INST_INCR_SCALAR1_IMM, localIndex, envPtr);
TclEmitInt1(immValue, envPtr);
} else {
TclEmitInstInt1(INST_INCR_SCALAR1, localIndex, envPtr);
}
} else {
if (haveImmValue) {
TclEmitInstInt1(INST_INCR_SCALAR_STK_IMM, immValue, envPtr);
} else {
TclEmitOpcode(INST_INCR_SCALAR_STK, envPtr);
}
}
} else {
if (localIndex >= 0) {
if (haveImmValue) {
TclEmitInstInt1(INST_INCR_ARRAY1_IMM, localIndex, envPtr);
TclEmitInt1(immValue, envPtr);
} else {
TclEmitInstInt1(INST_INCR_ARRAY1, localIndex, envPtr);
}
} else {
if (haveImmValue) {
TclEmitInstInt1(INST_INCR_ARRAY_STK_IMM, immValue, envPtr);
} else {
TclEmitOpcode(INST_INCR_ARRAY_STK, envPtr);
}
}
}
} else { /* Non-simple variable name. */
if (haveImmValue) {
TclEmitInstInt1(INST_INCR_STK_IMM, immValue, envPtr);
} else {
TclEmitOpcode(INST_INCR_STK, envPtr);
}
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileLappendCmd --
*
* Procedure called to compile the "lappend" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "lappend" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileLappendCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *varTokenPtr;
int simpleVarName, isScalar, localIndex, numWords;
DefineLineInformation; /* TIP #280 */
/*
* If we're not in a procedure, don't compile.
*/
if (envPtr->procPtr == NULL) {
return TCL_ERROR;
}
numWords = parsePtr->numWords;
if (numWords == 1) {
return TCL_ERROR;
}
if (numWords != 3) {
/*
* LAPPEND instructions currently only handle one value appends.
*/
return TCL_ERROR;
}
/*
* Decide if we can use a frame slot for the var/array name or if we
* need to emit code to compute and push the name at runtime. We use a
* frame slot (entry in the array of local vars) if we are compiling a
* procedure body and if the name is simple text that does not include
* namespace qualifiers.
*/
varTokenPtr = TokenAfter(parsePtr->tokenPtr);
PushVarNameWord(interp, varTokenPtr, envPtr, TCL_CREATE_VAR,
&localIndex, &simpleVarName, &isScalar, 1);
/*
* If we are doing an assignment, push the new value. In the no values
* case, create an empty object.
*/
if (numWords > 2) {
Tcl_Token *valueTokenPtr = TokenAfter(varTokenPtr);
CompileWord(envPtr, valueTokenPtr, interp, 2);
}
/*
* Emit instructions to set/get the variable.
*/
/*
* The *_STK opcodes should be refactored to make better use of existing
* LOAD/STORE instructions.
*/
if (simpleVarName) {
if (isScalar) {
if (localIndex < 0) {
TclEmitOpcode(INST_LAPPEND_STK, envPtr);
} else if (localIndex <= 255) {
TclEmitInstInt1(INST_LAPPEND_SCALAR1, localIndex, envPtr);
} else {
TclEmitInstInt4(INST_LAPPEND_SCALAR4, localIndex, envPtr);
}
} else {
if (localIndex < 0) {
TclEmitOpcode(INST_LAPPEND_ARRAY_STK, envPtr);
} else if (localIndex <= 255) {
TclEmitInstInt1(INST_LAPPEND_ARRAY1, localIndex, envPtr);
} else {
TclEmitInstInt4(INST_LAPPEND_ARRAY4, localIndex, envPtr);
}
}
} else {
TclEmitOpcode(INST_LAPPEND_STK, envPtr);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileLassignCmd --
*
* Procedure called to compile the "lassign" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "lassign" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileLassignCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *tokenPtr;
int simpleVarName, isScalar, localIndex, numWords, idx;
DefineLineInformation; /* TIP #280 */
numWords = parsePtr->numWords;
/*
* Check for command syntax error, but we'll punt that to runtime.
*/
if (numWords < 3) {
return TCL_ERROR;
}
/*
* Generate code to push list being taken apart by [lassign].
*/
tokenPtr = TokenAfter(parsePtr->tokenPtr);
CompileWord(envPtr, tokenPtr, interp, 1);
/*
* Generate code to assign values from the list to variables.
*/
for (idx=0 ; idx<numWords-2 ; idx++) {
tokenPtr = TokenAfter(tokenPtr);
/*
* Generate the next variable name.
*/
PushVarNameWord(interp, tokenPtr, envPtr, TCL_CREATE_VAR, &localIndex,
&simpleVarName, &isScalar, idx+2);
/*
* Emit instructions to get the idx'th item out of the list value on
* the stack and assign it to the variable.
*/
if (simpleVarName) {
if (isScalar) {
if (localIndex >= 0) {
TclEmitOpcode(INST_DUP, envPtr);
TclEmitInstInt4(INST_LIST_INDEX_IMM, idx, envPtr);
if (localIndex <= 255) {
TclEmitInstInt1(INST_STORE_SCALAR1,localIndex,envPtr);
} else {
TclEmitInstInt4(INST_STORE_SCALAR4,localIndex,envPtr);
}
} else {
TclEmitInstInt4(INST_OVER, 1, envPtr);
TclEmitInstInt4(INST_LIST_INDEX_IMM, idx, envPtr);
TclEmitOpcode(INST_STORE_SCALAR_STK, envPtr);
}
} else {
if (localIndex >= 0) {
TclEmitInstInt4(INST_OVER, 1, envPtr);
TclEmitInstInt4(INST_LIST_INDEX_IMM, idx, envPtr);
if (localIndex <= 255) {
TclEmitInstInt1(INST_STORE_ARRAY1, localIndex, envPtr);
} else {
TclEmitInstInt4(INST_STORE_ARRAY4, localIndex, envPtr);
}
} else {
TclEmitInstInt4(INST_OVER, 2, envPtr);
TclEmitInstInt4(INST_LIST_INDEX_IMM, idx, envPtr);
TclEmitOpcode(INST_STORE_ARRAY_STK, envPtr);
}
}
} else {
TclEmitInstInt4(INST_OVER, 1, envPtr);
TclEmitInstInt4(INST_LIST_INDEX_IMM, idx, envPtr);
TclEmitOpcode(INST_STORE_STK, envPtr);
}
TclEmitOpcode(INST_POP, envPtr);
}
/*
* Generate code to leave the rest of the list on the stack.
*/
TclEmitInstInt4(INST_LIST_RANGE_IMM, idx, envPtr);
TclEmitInt4(-2, envPtr); /* -2 == "end" */
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileLindexCmd --
*
* Procedure called to compile the "lindex" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "lindex" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileLindexCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *idxTokenPtr, *valTokenPtr;
int i, numWords = parsePtr->numWords;
DefineLineInformation; /* TIP #280 */
/*
* Quit if too few args.
*/
if (numWords <= 1) {
return TCL_ERROR;
}
valTokenPtr = TokenAfter(parsePtr->tokenPtr);
if (numWords != 3) {
goto emitComplexLindex;
}
idxTokenPtr = TokenAfter(valTokenPtr);
if (idxTokenPtr->type == TCL_TOKEN_SIMPLE_WORD) {
Tcl_Obj *tmpObj;
int idx, result;
tmpObj = Tcl_NewStringObj(idxTokenPtr[1].start, idxTokenPtr[1].size);
result = TclGetIntFromObj(NULL, tmpObj, &idx);
TclDecrRefCount(tmpObj);
if (result == TCL_OK && idx >= 0) {
/*
* All checks have been completed, and we have exactly this
* construct:
* lindex <arbitraryValue> <posInt>
* This is best compiled as a push of the arbitrary value followed
* by an "immediate lindex" which is the most efficient variety.
*/
CompileWord(envPtr, valTokenPtr, interp, 1);
TclEmitInstInt4(INST_LIST_INDEX_IMM, idx, envPtr);
return TCL_OK;
}
/*
* If the conversion failed or the value was negative, we just keep on
* going with the more complex compilation.
*/
}
/*
* Push the operands onto the stack.
*/
emitComplexLindex:
for (i=1 ; i<numWords ; i++) {
CompileWord(envPtr, valTokenPtr, interp, i);
valTokenPtr = TokenAfter(valTokenPtr);
}
/*
* Emit INST_LIST_INDEX if objc==3, or INST_LIST_INDEX_MULTI if there are
* multiple index args.
*/
if (numWords == 3) {
TclEmitOpcode(INST_LIST_INDEX, envPtr);
} else {
TclEmitInstInt4(INST_LIST_INDEX_MULTI, numWords-1, envPtr);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileListCmd --
*
* Procedure called to compile the "list" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "list" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileListCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
DefineLineInformation; /* TIP #280 */
/*
* If we're not in a procedure, don't compile.
*/
if (envPtr->procPtr == NULL) {
return TCL_ERROR;
}
if (parsePtr->numWords == 1) {
/*
* [list] without arguments just pushes an empty object.
*/
PushLiteral(envPtr, "", 0);
} else {
/*
* Push the all values onto the stack.
*/
Tcl_Token *valueTokenPtr;
int i, numWords;
numWords = parsePtr->numWords;
valueTokenPtr = TokenAfter(parsePtr->tokenPtr);
for (i = 1; i < numWords; i++) {
CompileWord(envPtr, valueTokenPtr, interp, i);
valueTokenPtr = TokenAfter(valueTokenPtr);
}
TclEmitInstInt4(INST_LIST, numWords - 1, envPtr);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileLlengthCmd --
*
* Procedure called to compile the "llength" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "llength" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileLlengthCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *varTokenPtr;
DefineLineInformation; /* TIP #280 */
if (parsePtr->numWords != 2) {
return TCL_ERROR;
}
varTokenPtr = TokenAfter(parsePtr->tokenPtr);
CompileWord(envPtr, varTokenPtr, interp, 1);
TclEmitOpcode(INST_LIST_LENGTH, envPtr);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileLsetCmd --
*
* Procedure called to compile the "lset" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "lset" command at
* runtime.
*
* The general template for execution of the "lset" command is:
* (1) Instructions to push the variable name, unless the variable is
* local to the stack frame.
* (2) If the variable is an array element, instructions to push the
* array element name.
* (3) Instructions to push each of zero or more "index" arguments to the
* stack, followed with the "newValue" element.
* (4) Instructions to duplicate the variable name and/or array element
* name onto the top of the stack, if either was pushed at steps (1)
* and (2).
* (5) The appropriate INST_LOAD_* instruction to place the original
* value of the list variable at top of stack.
* (6) At this point, the stack contains:
* varName? arrayElementName? index1 index2 ... newValue oldList
* The compiler emits one of INST_LSET_FLAT or INST_LSET_LIST
* according as whether there is exactly one index element (LIST) or
* either zero or else two or more (FLAT). This instruction removes
* everything from the stack except for the two names and pushes the
* new value of the variable.
* (7) Finally, INST_STORE_* stores the new value in the variable and
* cleans up the stack.
*
*----------------------------------------------------------------------
*/
int
TclCompileLsetCmd(
Tcl_Interp *interp, /* Tcl interpreter for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the
* command. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds the resulting instructions. */
{
int tempDepth; /* Depth used for emitting one part of the
* code burst. */
Tcl_Token *varTokenPtr; /* Pointer to the Tcl_Token representing the
* parse of the variable name. */
int localIndex; /* Index of var in local var table. */
int simpleVarName; /* Flag == 1 if var name is simple. */
int isScalar; /* Flag == 1 if scalar, 0 if array. */
int i;
DefineLineInformation; /* TIP #280 */
/*
* Check argument count.
*/
if (parsePtr->numWords < 3) {
/*
* Fail at run time, not in compilation.
*/
return TCL_ERROR;
}
/*
* Decide if we can use a frame slot for the var/array name or if we need
* to emit code to compute and push the name at runtime. We use a frame
* slot (entry in the array of local vars) if we are compiling a procedure
* body and if the name is simple text that does not include namespace
* qualifiers.
*/
varTokenPtr = TokenAfter(parsePtr->tokenPtr);
PushVarNameWord(interp, varTokenPtr, envPtr, TCL_CREATE_VAR,
&localIndex, &simpleVarName, &isScalar, 1);
/*
* Push the "index" args and the new element value.
*/
for (i=2 ; i<parsePtr->numWords ; ++i) {
varTokenPtr = TokenAfter(varTokenPtr);
CompileWord(envPtr, varTokenPtr, interp, i);
}
/*
* Duplicate the variable name if it's been pushed.
*/
if (!simpleVarName || localIndex < 0) {
if (!simpleVarName || isScalar) {
tempDepth = parsePtr->numWords - 2;
} else {
tempDepth = parsePtr->numWords - 1;
}
TclEmitInstInt4(INST_OVER, tempDepth, envPtr);
}
/*
* Duplicate an array index if one's been pushed.
*/
if (simpleVarName && !isScalar) {
if (localIndex < 0) {
tempDepth = parsePtr->numWords - 1;
} else {
tempDepth = parsePtr->numWords - 2;
}
TclEmitInstInt4(INST_OVER, tempDepth, envPtr);
}
/*
* Emit code to load the variable's value.
*/
if (!simpleVarName) {
TclEmitOpcode(INST_LOAD_STK, envPtr);
} else if (isScalar) {
if (localIndex < 0) {
TclEmitOpcode(INST_LOAD_SCALAR_STK, envPtr);
} else if (localIndex < 0x100) {
TclEmitInstInt1(INST_LOAD_SCALAR1, localIndex, envPtr);
} else {
TclEmitInstInt4(INST_LOAD_SCALAR4, localIndex, envPtr);
}
} else {
if (localIndex < 0) {
TclEmitOpcode(INST_LOAD_ARRAY_STK, envPtr);
} else if (localIndex < 0x100) {
TclEmitInstInt1(INST_LOAD_ARRAY1, localIndex, envPtr);
} else {
TclEmitInstInt4(INST_LOAD_ARRAY4, localIndex, envPtr);
}
}
/*
* Emit the correct variety of 'lset' instruction.
*/
if (parsePtr->numWords == 4) {
TclEmitOpcode(INST_LSET_LIST, envPtr);
} else {
TclEmitInstInt4(INST_LSET_FLAT, parsePtr->numWords-1, envPtr);
}
/*
* Emit code to put the value back in the variable.
*/
if (!simpleVarName) {
TclEmitOpcode(INST_STORE_STK, envPtr);
} else if (isScalar) {
if (localIndex < 0) {
TclEmitOpcode(INST_STORE_SCALAR_STK, envPtr);
} else if (localIndex < 0x100) {
TclEmitInstInt1(INST_STORE_SCALAR1, localIndex, envPtr);
} else {
TclEmitInstInt4(INST_STORE_SCALAR4, localIndex, envPtr);
}
} else {
if (localIndex < 0) {
TclEmitOpcode(INST_STORE_ARRAY_STK, envPtr);
} else if (localIndex < 0x100) {
TclEmitInstInt1(INST_STORE_ARRAY1, localIndex, envPtr);
} else {
TclEmitInstInt4(INST_STORE_ARRAY4, localIndex, envPtr);
}
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileRegexpCmd --
*
* Procedure called to compile the "regexp" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "regexp" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileRegexpCmd(
Tcl_Interp *interp, /* Tcl interpreter for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the
* command. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds the resulting instructions. */
{
Tcl_Token *varTokenPtr; /* Pointer to the Tcl_Token representing the
* parse of the RE or string. */
int i, len, nocase, exact, sawLast, simple;
char *str;
DefineLineInformation; /* TIP #280 */
/*
* We are only interested in compiling simple regexp cases. Currently
* supported compile cases are:
* regexp ?-nocase? ?--? staticString $var
* regexp ?-nocase? ?--? {^staticString$} $var
*/
if (parsePtr->numWords < 3) {
return TCL_ERROR;
}
simple = 0;
nocase = 0;
sawLast = 0;
varTokenPtr = parsePtr->tokenPtr;
/*
* We only look for -nocase and -- as options. Everything else gets pushed
* to runtime execution. This is different than regexp's runtime option
* handling, but satisfies our stricter needs.
*/
for (i = 1; i < parsePtr->numWords - 2; i++) {
varTokenPtr = TokenAfter(varTokenPtr);
if (varTokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
/*
* Not a simple string, so punt to runtime.
*/
return TCL_ERROR;
}
str = (char *) varTokenPtr[1].start;
len = varTokenPtr[1].size;
if ((len == 2) && (str[0] == '-') && (str[1] == '-')) {
sawLast++;
i++;
break;
} else if ((len > 1) && (strncmp(str,"-nocase",(unsigned)len) == 0)) {
nocase = 1;
} else {
/*
* Not an option we recognize.
*/
return TCL_ERROR;
}
}
if ((parsePtr->numWords - i) != 2) {
/*
* We don't support capturing to variables.
*/
return TCL_ERROR;
}
/*
* Get the regexp string. If it is not a simple string or can't be
* converted to a glob pattern, push the word for the INST_REGEXP.
* Keep changes here in sync with TclCompileSwitchCmd Switch_Regexp.
*/
varTokenPtr = TokenAfter(varTokenPtr);
if (varTokenPtr->type == TCL_TOKEN_SIMPLE_WORD) {
Tcl_DString ds;
str = (char *) varTokenPtr[1].start;
len = varTokenPtr[1].size;
/*
* If it has a '-', it could be an incorrectly formed regexp command.
*/
if ((*str == '-') && !sawLast) {
return TCL_ERROR;
}
if (len == 0) {
/*
* The semantics of regexp are always match on re == "".
*/
PushLiteral(envPtr, "1", 1);
return TCL_OK;
}
/*
* Attempt to convert pattern to glob. If successful, push the
* converted pattern as a literal.
*/
if (TclReToGlob(NULL, varTokenPtr[1].start, len, &ds, &exact)
== TCL_OK) {
simple = 1;
PushLiteral(envPtr, Tcl_DStringValue(&ds),Tcl_DStringLength(&ds));
Tcl_DStringFree(&ds);
}
}
if (!simple) {
CompileWord(envPtr, varTokenPtr, interp, parsePtr->numWords-2);
}
/*
* Push the string arg.
*/
varTokenPtr = TokenAfter(varTokenPtr);
CompileWord(envPtr, varTokenPtr, interp, parsePtr->numWords-1);
if (simple) {
if (exact && !nocase) {
TclEmitOpcode(INST_STR_EQ, envPtr);
} else {
TclEmitInstInt1(INST_STR_MATCH, nocase, envPtr);
}
} else {
/*
* Pass correct RE compile flags. We use only Int1 (8-bit), but
* that handles all the flags we want to pass.
* Don't use TCL_REG_NOSUB as we may have backrefs.
*/
int cflags = TCL_REG_ADVANCED | (nocase ? TCL_REG_NOCASE : 0);
TclEmitInstInt1(INST_REGEXP, cflags, envPtr);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileReturnCmd --
*
* Procedure called to compile the "return" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "return" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileReturnCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
/*
* General syntax: [return ?-option value ...? ?result?]
* An even number of words means an explicit result argument is present.
*/
int level, code, objc, size, status = TCL_OK;
int numWords = parsePtr->numWords;
int explicitResult = (0 == (numWords % 2));
int numOptionWords = numWords - 1 - explicitResult;
Tcl_Obj *returnOpts, **objv;
Tcl_Token *wordTokenPtr = TokenAfter(parsePtr->tokenPtr);
DefineLineInformation; /* TIP #280 */
/*
* Check for special case which can always be compiled:
* return -options <opts> <msg>
* Unlike the normal [return] compilation, this version does everything at
* runtime so it can handle arbitrary words and not just literals. Note
* that if INST_RETURN_STK wasn't already needed for something else
* ('finally' clause processing) this piece of code would not be present.
*/
if ((numWords == 4) && (wordTokenPtr->type == TCL_TOKEN_SIMPLE_WORD)
&& (wordTokenPtr[1].size == 8)
&& (strncmp(wordTokenPtr[1].start, "-options", 8) == 0)) {
Tcl_Token *optsTokenPtr = TokenAfter(wordTokenPtr);
Tcl_Token *msgTokenPtr = TokenAfter(optsTokenPtr);
CompileWord(envPtr, optsTokenPtr, interp, 2);
CompileWord(envPtr, msgTokenPtr, interp, 3);
TclEmitOpcode(INST_RETURN_STK, envPtr);
return TCL_OK;
}
/*
* Allocate some working space.
*/
objv = (Tcl_Obj **) TclStackAlloc(interp,
numOptionWords * sizeof(Tcl_Obj *));
/*
* Scan through the return options. If any are unknown at compile time,
* there is no value in bytecompiling. Save the option values known in an
* objv array for merging into a return options dictionary.
*/
for (objc = 0; objc < numOptionWords; objc++) {
objv[objc] = Tcl_NewObj();
Tcl_IncrRefCount(objv[objc]);
if (!TclWordKnownAtCompileTime(wordTokenPtr, objv[objc])) {
objc++;
status = TCL_ERROR;
goto cleanup;
}
wordTokenPtr = TokenAfter(wordTokenPtr);
}
status = TclMergeReturnOptions(interp, objc, objv,
&returnOpts, &code, &level);
cleanup:
while (--objc >= 0) {
TclDecrRefCount(objv[objc]);
}
TclStackFree(interp, objv);
if (TCL_ERROR == status) {
/*
* Something was bogus in the return options. Clear the error message,
* and report back to the compiler that this must be interpreted at
* runtime.
*/
Tcl_ResetResult(interp);
return TCL_ERROR;
}
/*
* All options are known at compile time, so we're going to bytecompile.
* Emit instructions to push the result on the stack.
*/
if (explicitResult) {
CompileWord(envPtr, wordTokenPtr, interp, numWords-1);
} else {
/*
* No explict result argument, so default result is empty string.
*/
PushLiteral(envPtr, "", 0);
}
/*
* Check for optimization: When [return] is in a proc, and there's no
* enclosing [catch], and there are no return options, then the INST_DONE
* instruction is equivalent, and may be more efficient.
*/
if (numOptionWords == 0 && envPtr->procPtr != NULL) {
/*
* We have default return options and we're in a proc ...
*/
int index = envPtr->exceptArrayNext - 1;
int enclosingCatch = 0;
while (index >= 0) {
ExceptionRange range = envPtr->exceptArrayPtr[index];
if ((range.type == CATCH_EXCEPTION_RANGE)
&& (range.catchOffset == -1)) {
enclosingCatch = 1;
break;
}
index--;
}
if (!enclosingCatch) {
/*
* ... and there is no enclosing catch. Issue the maximally
* efficient exit instruction.
*/
Tcl_DecrRefCount(returnOpts);
TclEmitOpcode(INST_DONE, envPtr);
return TCL_OK;
}
}
/* Optimize [return -level 0 $x]. */
Tcl_DictObjSize(NULL, returnOpts, &size);
if (size == 0 && level == 0 && code == TCL_OK) {
Tcl_DecrRefCount(returnOpts);
return TCL_OK;
}
/*
* Could not use the optimization, so we push the return options dict, and
* emit the INST_RETURN_IMM instruction with code and level as operands.
*/
CompileReturnInternal(envPtr, INST_RETURN_IMM, code, level, returnOpts);
return TCL_OK;
}
static void
CompileReturnInternal(
CompileEnv *envPtr,
unsigned char op,
int code,
int level,
Tcl_Obj *returnOpts)
{
TclEmitPush(TclAddLiteralObj(envPtr, returnOpts, NULL), envPtr);
TclEmitInstInt4(op, code, envPtr);
TclEmitInt4(level, envPtr);
}
void
TclCompileSyntaxError(
Tcl_Interp *interp,
CompileEnv *envPtr)
{
Tcl_Obj *msg = Tcl_GetObjResult(interp);
int numBytes;
const char *bytes = TclGetStringFromObj(msg, &numBytes);
TclEmitPush(TclRegisterNewLiteral(envPtr, bytes, numBytes), envPtr);
CompileReturnInternal(envPtr, INST_SYNTAX, TCL_ERROR, 0,
Tcl_GetReturnOptions(interp, TCL_ERROR));
}
/*
*----------------------------------------------------------------------
*
* TclCompileSetCmd --
*
* Procedure called to compile the "set" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "set" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileSetCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *varTokenPtr, *valueTokenPtr;
int isAssignment, isScalar, simpleVarName, localIndex, numWords;
DefineLineInformation; /* TIP #280 */
numWords = parsePtr->numWords;
if ((numWords != 2) && (numWords != 3)) {
return TCL_ERROR;
}
isAssignment = (numWords == 3);
/*
* Decide if we can use a frame slot for the var/array name or if we need
* to emit code to compute and push the name at runtime. We use a frame
* slot (entry in the array of local vars) if we are compiling a procedure
* body and if the name is simple text that does not include namespace
* qualifiers.
*/
varTokenPtr = TokenAfter(parsePtr->tokenPtr);
PushVarNameWord(interp, varTokenPtr, envPtr, TCL_CREATE_VAR,
&localIndex, &simpleVarName, &isScalar, 1);
/*
* If we are doing an assignment, push the new value.
*/
if (isAssignment) {
valueTokenPtr = TokenAfter(varTokenPtr);
CompileWord(envPtr, valueTokenPtr, interp, 2);
}
/*
* Emit instructions to set/get the variable.
*/
if (simpleVarName) {
if (isScalar) {
if (localIndex < 0) {
TclEmitOpcode((isAssignment?
INST_STORE_SCALAR_STK : INST_LOAD_SCALAR_STK), envPtr);
} else if (localIndex <= 255) {
TclEmitInstInt1((isAssignment?
INST_STORE_SCALAR1 : INST_LOAD_SCALAR1),
localIndex, envPtr);
} else {
TclEmitInstInt4((isAssignment?
INST_STORE_SCALAR4 : INST_LOAD_SCALAR4),
localIndex, envPtr);
}
} else {
if (localIndex < 0) {
TclEmitOpcode((isAssignment?
INST_STORE_ARRAY_STK : INST_LOAD_ARRAY_STK), envPtr);
} else if (localIndex <= 255) {
TclEmitInstInt1((isAssignment?
INST_STORE_ARRAY1 : INST_LOAD_ARRAY1),
localIndex, envPtr);
} else {
TclEmitInstInt4((isAssignment?
INST_STORE_ARRAY4 : INST_LOAD_ARRAY4),
localIndex, envPtr);
}
}
} else {
TclEmitOpcode((isAssignment? INST_STORE_STK : INST_LOAD_STK), envPtr);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileStringCmpCmd --
*
* Procedure called to compile the simplest and most common form of the
* "string compare" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "string compare"
* command at runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileStringCmpCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
DefineLineInformation; /* TIP #280 */
Tcl_Token *tokenPtr;
/*
* We don't support any flags; the bytecode isn't that sophisticated.
*/
if (parsePtr->numWords != 3) {
return TCL_ERROR;
}
/*
* Push the two operands onto the stack and then the test.
*/
tokenPtr = TokenAfter(parsePtr->tokenPtr);
CompileWord(envPtr, tokenPtr, interp, 1);
tokenPtr = TokenAfter(tokenPtr);
CompileWord(envPtr, tokenPtr, interp, 2);
TclEmitOpcode(INST_STR_CMP, envPtr);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileStringEqualCmd --
*
* Procedure called to compile the simplest and most common form of the
* "string equal" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "string equal" command
* at runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileStringEqualCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
DefineLineInformation; /* TIP #280 */
Tcl_Token *tokenPtr;
/*
* We don't support any flags; the bytecode isn't that sophisticated.
*/
if (parsePtr->numWords != 3) {
return TCL_ERROR;
}
/*
* Push the two operands onto the stack and then the test.
*/
tokenPtr = TokenAfter(parsePtr->tokenPtr);
CompileWord(envPtr, tokenPtr, interp, 1);
tokenPtr = TokenAfter(tokenPtr);
CompileWord(envPtr, tokenPtr, interp, 2);
TclEmitOpcode(INST_STR_EQ, envPtr);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileStringIndexCmd --
*
* Procedure called to compile the simplest and most common form of the
* "string index" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "string index" command
* at runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileStringIndexCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
DefineLineInformation; /* TIP #280 */
Tcl_Token *tokenPtr;
if (parsePtr->numWords != 3) {
return TCL_ERROR;
}
/*
* Push the two operands onto the stack and then the index operation.
*/
tokenPtr = TokenAfter(parsePtr->tokenPtr);
CompileWord(envPtr, tokenPtr, interp, 1);
tokenPtr = TokenAfter(tokenPtr);
CompileWord(envPtr, tokenPtr, interp, 2);
TclEmitOpcode(INST_STR_INDEX, envPtr);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileStringMatchCmd --
*
* Procedure called to compile the simplest and most common form of the
* "string match" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "string match" command
* at runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileStringMatchCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
DefineLineInformation; /* TIP #280 */
Tcl_Token *tokenPtr;
int i, length, exactMatch = 0, nocase = 0;
const char *str;
if (parsePtr->numWords < 3 || parsePtr->numWords > 4) {
return TCL_ERROR;
}
tokenPtr = TokenAfter(parsePtr->tokenPtr);
/*
* Check if we have a -nocase flag.
*/
if (parsePtr->numWords == 4) {
if (tokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
return TCL_ERROR;
}
str = tokenPtr[1].start;
length = tokenPtr[1].size;
if ((length <= 1) || strncmp(str, "-nocase", (size_t) length)) {
/*
* Fail at run time, not in compilation.
*/
return TCL_ERROR;
}
nocase = 1;
tokenPtr = TokenAfter(tokenPtr);
}
/*
* Push the strings to match against each other.
*/
for (i = 0; i < 2; i++) {
if (tokenPtr->type == TCL_TOKEN_SIMPLE_WORD) {
str = tokenPtr[1].start;
length = tokenPtr[1].size;
if (!nocase && (i == 0)) {
/*
* Trivial matches can be done by 'string equal'. If -nocase
* was specified, we can't do this because INST_STR_EQ has no
* support for nocase.
*/
Tcl_Obj *copy = Tcl_NewStringObj(str, length);
Tcl_IncrRefCount(copy);
exactMatch = TclMatchIsTrivial(TclGetString(copy));
TclDecrRefCount(copy);
}
PushLiteral(envPtr, str, length);
} else {
SetLineInformation (i+1+nocase);
CompileTokens(envPtr, tokenPtr, interp);
}
tokenPtr = TokenAfter(tokenPtr);
}
/*
* Push the matcher.
*/
if (exactMatch) {
TclEmitOpcode(INST_STR_EQ, envPtr);
} else {
TclEmitInstInt1(INST_STR_MATCH, nocase, envPtr);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileStringLenCmd --
*
* Procedure called to compile the simplest and most common form of the
* "string length" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "string length"
* command at runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileStringLenCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
DefineLineInformation; /* TIP #280 */
Tcl_Token *tokenPtr;
if (parsePtr->numWords != 2) {
return TCL_ERROR;
}
tokenPtr = TokenAfter(parsePtr->tokenPtr);
if (tokenPtr->type == TCL_TOKEN_SIMPLE_WORD) {
/*
* Here someone is asking for the length of a static string. Just push
* the actual character (not byte) length.
*/
char buf[TCL_INTEGER_SPACE];
int len = Tcl_NumUtfChars(tokenPtr[1].start, tokenPtr[1].size);
len = sprintf(buf, "%d", len);
PushLiteral(envPtr, buf, len);
} else {
SetLineInformation (1);
CompileTokens(envPtr, tokenPtr, interp);
TclEmitOpcode(INST_STR_LEN, envPtr);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileSwitchCmd --
*
* Procedure called to compile the "switch" command.
*
* Results:
* Returns TCL_OK for successful compile, or TCL_ERROR to defer
* evaluation to runtime (either when it is too complex to get the
* semantics right, or when we know for sure that it is an error but need
* the error to happen at the right time).
*
* Side effects:
* Instructions are added to envPtr to execute the "switch" command at
* runtime.
*
* FIXME:
* Stack depths are probably not calculated correctly.
*
*----------------------------------------------------------------------
*/
int
TclCompileSwitchCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *tokenPtr; /* Pointer to tokens in command. */
int numWords; /* Number of words in command. */
Tcl_Token *valueTokenPtr; /* Token for the value to switch on. */
enum {Switch_Exact, Switch_Glob, Switch_Regexp} mode;
/* What kind of switch are we doing? */
Tcl_Token *bodyTokenArray; /* Array of real pattern list items. */
Tcl_Token **bodyToken; /* Array of pointers to pattern list items. */
int *bodyLines; /* Array of line numbers for body list
* items. */
int** bodyNext;
int foundDefault; /* Flag to indicate whether a "default" clause
* is present. */
JumpFixup *fixupArray; /* Array of forward-jump fixup records. */
int *fixupTargetArray; /* Array of places for fixups to point at. */
int fixupCount; /* Number of places to fix up. */
int contFixIndex; /* Where the first of the jumps due to a group
* of continuation bodies starts, or -1 if
* there aren't any. */
int contFixCount; /* Number of continuation bodies pointing to
* the current (or next) real body. */
int savedStackDepth = envPtr->currStackDepth;
int noCase; /* Has the -nocase flag been given? */
int foundMode = 0; /* Have we seen a mode flag yet? */
int isListedArms = 0;
int i, valueIndex;
DefineLineInformation; /* TIP #280 */
int* clNext = envPtr->clNext;
/*
* Only handle the following versions:
* switch ?--? word {pattern body ...}
* switch -exact ?--? word {pattern body ...}
* switch -glob ?--? word {pattern body ...}
* switch -regexp ?--? word {pattern body ...}
* switch -- word simpleWordPattern simpleWordBody ...
* switch -exact -- word simpleWordPattern simpleWordBody ...
* switch -glob -- word simpleWordPattern simpleWordBody ...
* switch -regexp -- word simpleWordPattern simpleWordBody ...
* When the mode is -glob, can also handle a -nocase flag.
*
* First off, we don't care how the command's word was generated; we're
* compiling it anyway! So skip it...
*/
tokenPtr = TokenAfter(parsePtr->tokenPtr);
valueIndex = 1;
numWords = parsePtr->numWords-1;
/*
* Check for options.
*/
noCase = 0;
mode = Switch_Exact;
if (numWords == 2) {
/*
* There's just the switch value and the bodies list. In that case, we
* can skip all option parsing and move on to consider switch values
* and the body list.
*/
goto finishedOptionParse;
}
/*
* There must be at least one option, --, because without that there is no
* way to statically avoid the problems you get from strings-to-be-matched
* that start with a - (the interpreted code falls apart if it encounters
* them, so we punt if we *might* encounter them as that is the easiest
* way of emulating the behaviour).
*/
for (; numWords>=3 ; tokenPtr=TokenAfter(tokenPtr),numWords--) {
register unsigned size = tokenPtr[1].size;
register const char *chrs = tokenPtr[1].start;
/*
* We only process literal options, and we assume that -e, -g and -n
* are unique prefixes of -exact, -glob and -nocase respectively (true
* at time of writing). Note that -exact and -glob may only be given
* at most once or we bail out (error case).
*/
if (tokenPtr->type != TCL_TOKEN_SIMPLE_WORD || size < 2) {
return TCL_ERROR;
}
if ((size <= 6) && !memcmp(chrs, "-exact", size)) {
if (foundMode) {
return TCL_ERROR;
}
mode = Switch_Exact;
foundMode = 1;
valueIndex++;
continue;
} else if ((size <= 5) && !memcmp(chrs, "-glob", size)) {
if (foundMode) {
return TCL_ERROR;
}
mode = Switch_Glob;
foundMode = 1;
valueIndex++;
continue;
} else if ((size <= 7) && !memcmp(chrs, "-regexp", size)) {
if (foundMode) {
return TCL_ERROR;
}
mode = Switch_Regexp;
foundMode = 1;
valueIndex++;
continue;
} else if ((size <= 7) && !memcmp(chrs, "-nocase", size)) {
noCase = 1;
valueIndex++;
continue;
} else if ((size == 2) && !memcmp(chrs, "--", 2)) {
valueIndex++;
break;
}
/*
* The switch command has many flags we cannot compile at all (e.g.
* all the RE-related ones) which we must have encountered. Either
* that or we have run off the end. The action here is the same: punt
* to interpreted version.
*/
return TCL_ERROR;
}
if (numWords < 3) {
return TCL_ERROR;
}
tokenPtr = TokenAfter(tokenPtr);
numWords--;
if (noCase && (mode == Switch_Exact)) {
/*
* Can't compile this case; no opcode for case-insensitive equality!
*/
return TCL_ERROR;
}
/*
* The value to test against is going to always get pushed on the stack.
* But not yet; we need to verify that the rest of the command is
* compilable too.
*/
finishedOptionParse:
valueTokenPtr = tokenPtr;
/* For valueIndex, see previous loop. */
tokenPtr = TokenAfter(tokenPtr);
numWords--;
/*
* Build an array of tokens for the matcher terms and script bodies. Note
* that in the case of the quoted bodies, this is tricky as we cannot use
* copies of the string from the input token for the generated tokens (it
* causes a crash during exception handling). When multiple tokens are
* available at this point, this is pretty easy.
*/
if (numWords == 1) {
Tcl_DString bodyList;
const char **argv = NULL, *tokenStartPtr, *p;
int bline; /* TIP #280: line of the pattern/action list,
* and start of list for when tracking the
* location. This list comes immediately after
* the value we switch on. */
int isTokenBraced;
/*
* Test that we've got a suitable body list as a simple (i.e. braced)
* word, and that the elements of the body are simple words too. This
* is really rather nasty indeed.
*/
if (tokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
return TCL_ERROR;
}
Tcl_DStringInit(&bodyList);
Tcl_DStringAppend(&bodyList, tokenPtr[1].start, tokenPtr[1].size);
if (Tcl_SplitList(NULL, Tcl_DStringValue(&bodyList), &numWords,
&argv) != TCL_OK) {
Tcl_DStringFree(&bodyList);
return TCL_ERROR;
}
Tcl_DStringFree(&bodyList);
/*
* Now we know what the switch arms are, we've got to see whether we
* can synthesize tokens for the arms. First check whether we've got a
* valid number of arms since we can do that now.
*/
if (numWords == 0 || numWords % 2) {
ckfree((char *) argv);
return TCL_ERROR;
}
isListedArms = 1;
bodyTokenArray = (Tcl_Token *) ckalloc(sizeof(Tcl_Token) * numWords);
bodyToken = (Tcl_Token **) ckalloc(sizeof(Tcl_Token *) * numWords);
bodyLines = (int *) ckalloc(sizeof(int) * numWords);
bodyNext = (int **) ckalloc(sizeof(int*) * numWords);
/*
* Locate the start of the arms within the overall word.
*/
bline = mapPtr->loc[eclIndex].line[valueIndex+1];
p = tokenStartPtr = tokenPtr[1].start;
while (isspace(UCHAR(*tokenStartPtr))) {
tokenStartPtr++;
}
if (*tokenStartPtr == '{') {
tokenStartPtr++;
isTokenBraced = 1;
} else {
isTokenBraced = 0;
}
/*
* TIP #280: Count lines within the literal list.
*/
for (i=0 ; i<numWords ; i++) {
bodyTokenArray[i].type = TCL_TOKEN_TEXT;
bodyTokenArray[i].start = tokenStartPtr;
bodyTokenArray[i].size = strlen(argv[i]);
bodyTokenArray[i].numComponents = 0;
bodyToken[i] = bodyTokenArray+i;
tokenStartPtr += bodyTokenArray[i].size;
/*
* Test to see if we have guessed the end of the word correctly;
* if not, we can't feed the real string to the sub-compilation
* engine, and we're then stuck and so have to punt out to doing
* everything at runtime.
*/
if ((isTokenBraced && *(tokenStartPtr++) != '}') ||
(tokenStartPtr < tokenPtr[1].start+tokenPtr[1].size
&& !isspace(UCHAR(*tokenStartPtr)))) {
ckfree((char *) argv);
ckfree((char *) bodyToken);
ckfree((char *) bodyTokenArray);
ckfree((char *) bodyLines);
ckfree((char *) bodyNext);
return TCL_ERROR;
}
/*
* TIP #280: Now determine the line the list element starts on
* (there is no need to do it earlier, due to the possibility of
* aborting, see above).
*/
TclAdvanceLines(&bline, p, bodyTokenArray[i].start);
TclAdvanceContinuations (&bline, &clNext,
bodyTokenArray[i].start - envPtr->source);
bodyLines[i] = bline;
bodyNext[i] = clNext;
p = bodyTokenArray[i].start;
while (isspace(UCHAR(*tokenStartPtr))) {
tokenStartPtr++;
if (tokenStartPtr >= tokenPtr[1].start+tokenPtr[1].size) {
break;
}
}
if (*tokenStartPtr == '{') {
tokenStartPtr++;
isTokenBraced = 1;
} else {
isTokenBraced = 0;
}
}
ckfree((char *) argv);
/*
* Check that we've parsed everything we thought we were going to
* parse. If not, something odd is going on (I believe it is possible
* to defeat the code above) and we should bail out.
*/
if (tokenStartPtr != tokenPtr[1].start+tokenPtr[1].size) {
ckfree((char *) bodyToken);
ckfree((char *) bodyTokenArray);
ckfree((char *) bodyLines);
ckfree((char *) bodyNext);
return TCL_ERROR;
}
} else if (numWords % 2 || numWords == 0) {
/*
* Odd number of words (>1) available, or no words at all available.
* Both are error cases, so punt and let the interpreted-version
* generate the error message. Note that the second case probably
* should get caught earlier, but it's easy to check here again anyway
* because it'd cause a nasty crash otherwise.
*/
return TCL_ERROR;
} else {
/*
* Multi-word definition of patterns & actions.
*/
bodyToken = (Tcl_Token **) ckalloc(sizeof(Tcl_Token *) * numWords);
bodyLines = (int *) ckalloc(sizeof(int) * numWords);
bodyNext = (int **) ckalloc(sizeof(int*) * numWords);
bodyTokenArray = NULL;
for (i=0 ; i<numWords ; i++) {
/*
* We only handle the very simplest case. Anything more complex is
* a good reason to go to the interpreted case anyway due to
* traces, etc.
*/
if (tokenPtr->type != TCL_TOKEN_SIMPLE_WORD ||
tokenPtr->numComponents != 1) {
ckfree((char *) bodyToken);
ckfree((char *) bodyLines);
ckfree((char *) bodyNext);
return TCL_ERROR;
}
bodyToken[i] = tokenPtr+1;
/*
* TIP #280: Copy line information from regular cmd info.
*/
bodyLines[i] = mapPtr->loc[eclIndex].line[valueIndex+1+i];
bodyNext[i] = mapPtr->loc[eclIndex].next[valueIndex+1+i];
tokenPtr = TokenAfter(tokenPtr);
}
}
/*
* Fall back to interpreted if the last body is a continuation (it's
* illegal, but this makes the error happen at the right time).
*/
if (bodyToken[numWords-1]->size == 1 &&
bodyToken[numWords-1]->start[0] == '-') {
ckfree((char *) bodyToken);
ckfree((char *) bodyLines);
ckfree((char *) bodyNext);
if (bodyTokenArray != NULL) {
ckfree((char *) bodyTokenArray);
}
return TCL_ERROR;
}
/*
* Now we commit to generating code; the parsing stage per se is done.
* First, we push the value we're matching against on the stack.
*/
SetLineInformation (valueIndex);
CompileTokens(envPtr, valueTokenPtr, interp);
/*
* Check if we can generate a jump table, since if so that's faster than
* doing an explicit compare with each body. Note that we're definitely
* over-conservative with determining whether we can do the jump table,
* but it handles the most common case well enough.
*/
if (isListedArms && mode == Switch_Exact && !noCase) {
JumptableInfo *jtPtr;
int infoIndex, isNew, *finalFixups, numRealBodies = 0, jumpLocation;
int mustGenerate, jumpToDefault;
Tcl_DString buffer;
Tcl_HashEntry *hPtr;
/*
* Compile the switch by using a jump table, which is basically a
* hashtable that maps from literal values to match against to the
* offset (relative to the INST_JUMP_TABLE instruction) to jump to.
* The jump table itself is independent of any invokation of the
* bytecode, and as such is stored in an auxData block.
*
* Start by allocating the jump table itself, plus some workspace.
*/
jtPtr = (JumptableInfo *) ckalloc(sizeof(JumptableInfo));
Tcl_InitHashTable(&jtPtr->hashTable, TCL_STRING_KEYS);
infoIndex = TclCreateAuxData(jtPtr, &tclJumptableInfoType, envPtr);
finalFixups = (int *) ckalloc(sizeof(int) * (numWords/2));
foundDefault = 0;
mustGenerate = 1;
/*
* Next, issue the instruction to do the jump, together with what we
* want to do if things do not work out (jump to either the default
* clause or the "default" default, which just sets the result to
* empty). Note that we will come back and rewrite the jump's offset
* parameter when we know what it should be, and that all jumps we
* issue are of the wide kind because that makes the code much easier
* to debug!
*/
jumpLocation = CurrentOffset(envPtr);
TclEmitInstInt4(INST_JUMP_TABLE, infoIndex, envPtr);
jumpToDefault = CurrentOffset(envPtr);
TclEmitInstInt4(INST_JUMP4, 0, envPtr);
for (i=0 ; i<numWords ; i+=2) {
/*
* For each arm, we must first work out what to do with the match
* term.
*/
if (i!=numWords-2 || bodyToken[numWords-2]->size != 7 ||
memcmp(bodyToken[numWords-2]->start, "default", 7)) {
/*
* This is not a default clause, so insert the current
* location as a target in the jump table (assuming it isn't
* already there, which would indicate that this clause is
* probably masked by an earlier one). Note that we use a
* Tcl_DString here simply because the hash API does not let
* us specify the string length.
*/
Tcl_DStringInit(&buffer);
Tcl_DStringAppend(&buffer, bodyToken[i]->start,
bodyToken[i]->size);
hPtr = Tcl_CreateHashEntry(&jtPtr->hashTable,
Tcl_DStringValue(&buffer), &isNew);
if (isNew) {
/*
* First time we've encountered this match clause, so it
* must point to here.
*/
Tcl_SetHashValue(hPtr, (ClientData)
(CurrentOffset(envPtr) - jumpLocation));
}
Tcl_DStringFree(&buffer);
} else {
/*
* This is a default clause, so patch up the fallthrough from
* the INST_JUMP_TABLE instruction to here.
*/
foundDefault = 1;
isNew = 1;
TclStoreInt4AtPtr(CurrentOffset(envPtr)-jumpToDefault,
envPtr->codeStart+jumpToDefault+1);
}
/*
* Now, for each arm we must deal with the body of the clause.
*
* If this is a continuation body (never true of a final clause,
* whether default or not) we're done because the next jump target
* will also point here, so we advance to the next clause.
*/
if (bodyToken[i+1]->size == 1 && bodyToken[i+1]->start[0] == '-') {
mustGenerate = 1;
continue;
}
/*
* Also skip this arm if its only match clause is masked. (We
* could probably be more aggressive about this, but that would be
* much more difficult to get right.)
*/
if (!isNew && !mustGenerate) {
continue;
}
mustGenerate = 0;
/*
* Compile the body of the arm.
*/
envPtr->line = bodyLines[i+1]; /* TIP #280 */
envPtr->clNext = bodyNext[i+1]; /* TIP #280 */
TclCompileCmdWord(interp, bodyToken[i+1], 1, envPtr);
/*
* Compile a jump in to the end of the command if this body is
* anything other than a user-supplied default arm (to either skip
* over the remaining bodies or the code that generates an empty
* result).
*/
if (i+2 < numWords || !foundDefault) {
finalFixups[numRealBodies++] = CurrentOffset(envPtr);
/*
* Easier by far to issue this jump as a fixed-width jump.
* Otherwise we'd need to do a lot more (and more awkward)
* rewriting when we fixed this all up.
*/
TclEmitInstInt4(INST_JUMP4, 0, envPtr);
}
}
/*
* We're at the end. If we've not already done so through the
* processing of a user-supplied default clause, add in a "default"
* default clause now.
*/
if (!foundDefault) {
TclStoreInt4AtPtr(CurrentOffset(envPtr)-jumpToDefault,
envPtr->codeStart+jumpToDefault+1);
PushLiteral(envPtr, "", 0);
}
/*
* No more instructions to be issued; everything that needs to jump to
* the end of the command is fixed up at this point.
*/
for (i=0 ; i<numRealBodies ; i++) {
TclStoreInt4AtPtr(CurrentOffset(envPtr)-finalFixups[i],
envPtr->codeStart+finalFixups[i]+1);
}
/*
* Clean up all our temporary space and return.
*/
ckfree((char *) finalFixups);
ckfree((char *) bodyToken);
ckfree((char *) bodyLines);
ckfree((char *) bodyNext);
if (bodyTokenArray != NULL) {
ckfree((char *) bodyTokenArray);
}
return TCL_OK;
}
/*
* Generate a test for each arm.
*/
contFixIndex = -1;
contFixCount = 0;
fixupArray = (JumpFixup *) ckalloc(sizeof(JumpFixup) * numWords);
fixupTargetArray = (int *) ckalloc(sizeof(int) * numWords);
memset(fixupTargetArray, 0, numWords * sizeof(int));
fixupCount = 0;
foundDefault = 0;
for (i=0 ; i<numWords ; i+=2) {
int nextArmFixupIndex = -1;
envPtr->currStackDepth = savedStackDepth + 1;
if (i!=numWords-2 || bodyToken[numWords-2]->size != 7 ||
memcmp(bodyToken[numWords-2]->start, "default", 7)) {
/*
* Generate the test for the arm.
*/
switch (mode) {
case Switch_Exact:
TclEmitOpcode(INST_DUP, envPtr);
TclCompileTokens(interp, bodyToken[i], 1, envPtr);
TclEmitOpcode(INST_STR_EQ, envPtr);
break;
case Switch_Glob:
TclCompileTokens(interp, bodyToken[i], 1, envPtr);
TclEmitInstInt4(INST_OVER, 1, envPtr);
TclEmitInstInt1(INST_STR_MATCH, noCase, envPtr);
break;
case Switch_Regexp: {
int simple = 0, exact = 0;
/*
* Keep in sync with TclCompileRegexpCmd.
*/
if (bodyToken[i]->type == TCL_TOKEN_TEXT) {
Tcl_DString ds;
if (bodyToken[i]->size == 0) {
/*
* The semantics of regexps are that they always match
* when the RE == "".
*/
PushLiteral(envPtr, "1", 1);
break;
}
/*
* Attempt to convert pattern to glob. If successful, push
* the converted pattern.
*/
if (TclReToGlob(NULL, bodyToken[i]->start,
bodyToken[i]->size, &ds, &exact) == TCL_OK) {
simple = 1;
PushLiteral(envPtr, Tcl_DStringValue(&ds),
Tcl_DStringLength(&ds));
Tcl_DStringFree(&ds);
}
}
if (!simple) {
TclCompileTokens(interp, bodyToken[i], 1, envPtr);
}
TclEmitInstInt4(INST_OVER, 1, envPtr);
if (simple) {
if (exact && !noCase) {
TclEmitOpcode(INST_STR_EQ, envPtr);
} else {
TclEmitInstInt1(INST_STR_MATCH, noCase, envPtr);
}
} else {
/*
* Pass correct RE compile flags. We use only Int1
* (8-bit), but that handles all the flags we want to
* pass. Don't use TCL_REG_NOSUB as we may have backrefs
* or capture vars.
*/
int cflags = TCL_REG_ADVANCED
| (noCase ? TCL_REG_NOCASE : 0);
TclEmitInstInt1(INST_REGEXP, cflags, envPtr);
}
break;
}
default:
Tcl_Panic("unknown switch mode: %d", mode);
}
/*
* In a fall-through case, we will jump on _true_ to the place
* where the body starts (generated later, with guarantee of this
* ensured earlier; the final body is never a fall-through).
*/
if (bodyToken[i+1]->size==1 && bodyToken[i+1]->start[0]=='-') {
if (contFixIndex == -1) {
contFixIndex = fixupCount;
contFixCount = 0;
}
TclEmitForwardJump(envPtr, TCL_TRUE_JUMP,
fixupArray+contFixIndex+contFixCount);
fixupCount++;
contFixCount++;
continue;
}
TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, fixupArray+fixupCount);
nextArmFixupIndex = fixupCount;
fixupCount++;
} else {
/*
* Got a default clause; set a flag to inhibit the generation of
* the jump after the body and the cleanup of the intermediate
* value that we are switching against.
*
* Note that default clauses (which are always terminal clauses)
* cannot be fall-through clauses as well, since the last clause
* is never a fall-through clause (which we have already
* verified).
*/
foundDefault = 1;
}
/*
* Generate the body for the arm. This is guaranteed not to be a
* fall-through case, but it might have preceding fall-through cases,
* so we must process those first.
*/
if (contFixIndex != -1) {
int j;
for (j=0 ; j<contFixCount ; j++) {
fixupTargetArray[contFixIndex+j] = CurrentOffset(envPtr);
}
contFixIndex = -1;
}
/*
* Now do the actual compilation. Note that we do not use CompileBody
* because we may have synthesized the tokens in a non-standard
* pattern.
*/
TclEmitOpcode(INST_POP, envPtr);
envPtr->currStackDepth = savedStackDepth + 1;
envPtr->line = bodyLines[i+1]; /* TIP #280 */
envPtr->clNext = bodyNext[i+1]; /* TIP #280 */
TclCompileCmdWord(interp, bodyToken[i+1], 1, envPtr);
if (!foundDefault) {
TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP,
fixupArray+fixupCount);
fixupCount++;
fixupTargetArray[nextArmFixupIndex] = CurrentOffset(envPtr);
}
}
/*
* Clean up all our temporary space and return.
*/
ckfree((char *) bodyToken);
ckfree((char *) bodyLines);
ckfree((char *) bodyNext);
if (bodyTokenArray != NULL) {
ckfree((char *) bodyTokenArray);
}
/*
* Discard the value we are matching against unless we've had a default
* clause (in which case it will already be gone due to the code at the
* start of processing an arm, guaranteed) and make the result of the
* command an empty string.
*/
if (!foundDefault) {
TclEmitOpcode(INST_POP, envPtr);
PushLiteral(envPtr, "", 0);
}
/*
* Do jump fixups for arms that were executed. First, fill in the jumps of
* all jumps that don't point elsewhere to point to here.
*/
for (i=0 ; i<fixupCount ; i++) {
if (fixupTargetArray[i] == 0) {
fixupTargetArray[i] = envPtr->codeNext-envPtr->codeStart;
}
}
/*
* Now scan backwards over all the jumps (all of which are forward jumps)
* doing each one. When we do one and there is a size changes, we must
* scan back over all the previous ones and see if they need adjusting
* before proceeding with further jump fixups (the interleaved nature of
* all the jumps makes this impossible to do without nested loops).
*/
for (i=fixupCount-1 ; i>=0 ; i--) {
if (TclFixupForwardJump(envPtr, &fixupArray[i],
fixupTargetArray[i] - fixupArray[i].codeOffset, 127)) {
int j;
for (j=i-1 ; j>=0 ; j--) {
if (fixupTargetArray[j] > fixupArray[i].codeOffset) {
fixupTargetArray[j] += 3;
}
}
}
}
ckfree((char *) fixupArray);
ckfree((char *) fixupTargetArray);
envPtr->currStackDepth = savedStackDepth + 1;
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* DupJumptableInfo, FreeJumptableInfo --
*
* Functions to duplicate, release and print a jump-table created for use
* with the INST_JUMP_TABLE instruction.
*
* Results:
* DupJumptableInfo: a copy of the jump-table
* FreeJumptableInfo: none
* PrintJumptableInfo: none
*
* Side effects:
* DupJumptableInfo: allocates memory
* FreeJumptableInfo: releases memory
* PrintJumptableInfo: none
*
*----------------------------------------------------------------------
*/
static ClientData
DupJumptableInfo(
ClientData clientData)
{
JumptableInfo *jtPtr = clientData;
JumptableInfo *newJtPtr = (JumptableInfo *)
ckalloc(sizeof(JumptableInfo));
Tcl_HashEntry *hPtr, *newHPtr;
Tcl_HashSearch search;
int isNew;
Tcl_InitHashTable(&newJtPtr->hashTable, TCL_STRING_KEYS);
hPtr = Tcl_FirstHashEntry(&jtPtr->hashTable, &search);
while (hPtr != NULL) {
newHPtr = Tcl_CreateHashEntry(&newJtPtr->hashTable,
Tcl_GetHashKey(&jtPtr->hashTable, hPtr), &isNew);
Tcl_SetHashValue(newHPtr, Tcl_GetHashValue(hPtr));
}
return newJtPtr;
}
static void
FreeJumptableInfo(
ClientData clientData)
{
JumptableInfo *jtPtr = clientData;
Tcl_DeleteHashTable(&jtPtr->hashTable);
ckfree((char *) jtPtr);
}
static void
PrintJumptableInfo(
ClientData clientData,
Tcl_Obj *appendObj,
ByteCode *codePtr,
unsigned int pcOffset)
{
register JumptableInfo *jtPtr = clientData;
Tcl_HashEntry *hPtr;
Tcl_HashSearch search;
const char *keyPtr;
int offset, i = 0;
hPtr = Tcl_FirstHashEntry(&jtPtr->hashTable, &search);
for (; hPtr ; hPtr = Tcl_NextHashEntry(&search)) {
keyPtr = Tcl_GetHashKey(&jtPtr->hashTable, hPtr);
offset = PTR2INT(Tcl_GetHashValue(hPtr));
if (i++) {
Tcl_AppendToObj(appendObj, ", ", -1);
if (i%4==0) {
Tcl_AppendToObj(appendObj, "\n\t\t", -1);
}
}
Tcl_AppendPrintfToObj(appendObj, "\"%s\"->pc %d",
keyPtr, pcOffset + offset);
}
}
/*
*----------------------------------------------------------------------
*
* TclCompileWhileCmd --
*
* Procedure called to compile the "while" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "while" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileWhileCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *testTokenPtr, *bodyTokenPtr;
JumpFixup jumpEvalCondFixup;
int testCodeOffset, bodyCodeOffset, jumpDist, range, code, boolVal;
int savedStackDepth = envPtr->currStackDepth;
int loopMayEnd = 1; /* This is set to 0 if it is recognized as an
* infinite loop. */
Tcl_Obj *boolObj;
DefineLineInformation; /* TIP #280 */
if (parsePtr->numWords != 3) {
return TCL_ERROR;
}
/*
* If the test expression requires substitutions, don't compile the while
* command inline. E.g., the expression might cause the loop to never
* execute or execute forever, as in "while "$x < 5" {}".
*
* Bail out also if the body expression requires substitutions in order to
* insure correct behaviour [Bug 219166]
*/
testTokenPtr = TokenAfter(parsePtr->tokenPtr);
bodyTokenPtr = TokenAfter(testTokenPtr);
if ((testTokenPtr->type != TCL_TOKEN_SIMPLE_WORD)
|| (bodyTokenPtr->type != TCL_TOKEN_SIMPLE_WORD)) {
return TCL_ERROR;
}
/*
* Find out if the condition is a constant.
*/
boolObj = Tcl_NewStringObj(testTokenPtr[1].start, testTokenPtr[1].size);
Tcl_IncrRefCount(boolObj);
code = Tcl_GetBooleanFromObj(NULL, boolObj, &boolVal);
TclDecrRefCount(boolObj);
if (code == TCL_OK) {
if (boolVal) {
/*
* It is an infinite loop; flag it so that we generate a more
* efficient body.
*/
loopMayEnd = 0;
} else {
/*
* This is an empty loop: "while 0 {...}" or such. Compile no
* bytecodes.
*/
goto pushResult;
}
}
/*
* Create a ExceptionRange record for the loop body. This is used to
* implement break and continue.
*/
range = DeclareExceptionRange(envPtr, LOOP_EXCEPTION_RANGE);
/*
* Jump to the evaluation of the condition. This code uses the "loop
* rotation" optimisation (which eliminates one branch from the loop).
* "while cond body" produces then:
* goto A
* B: body : bodyCodeOffset
* A: cond -> result : testCodeOffset, continueOffset
* if (result) goto B
*
* The infinite loop "while 1 body" produces:
* B: body : all three offsets here
* goto B
*/
if (loopMayEnd) {
TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP, &jumpEvalCondFixup);
testCodeOffset = 0; /* Avoid compiler warning. */
} else {
/*
* Make sure that the first command in the body is preceded by an
* INST_START_CMD, and hence counted properly. [Bug 1752146]
*/
envPtr->atCmdStart = 0;
testCodeOffset = CurrentOffset(envPtr);
}
/*
* Compile the loop body.
*/
SetLineInformation (2);
bodyCodeOffset = ExceptionRangeStarts(envPtr, range);
CompileBody(envPtr, bodyTokenPtr, interp);
ExceptionRangeEnds(envPtr, range);
envPtr->currStackDepth = savedStackDepth + 1;
TclEmitOpcode(INST_POP, envPtr);
/*
* Compile the test expression then emit the conditional jump that
* terminates the while. We already know it's a simple word.
*/
if (loopMayEnd) {
testCodeOffset = CurrentOffset(envPtr);
jumpDist = testCodeOffset - jumpEvalCondFixup.codeOffset;
if (TclFixupForwardJump(envPtr, &jumpEvalCondFixup, jumpDist, 127)) {
bodyCodeOffset += 3;
testCodeOffset += 3;
}
envPtr->currStackDepth = savedStackDepth;
SetLineInformation (1);
TclCompileExprWords(interp, testTokenPtr, 1, envPtr);
envPtr->currStackDepth = savedStackDepth + 1;
jumpDist = CurrentOffset(envPtr) - bodyCodeOffset;
if (jumpDist > 127) {
TclEmitInstInt4(INST_JUMP_TRUE4, -jumpDist, envPtr);
} else {
TclEmitInstInt1(INST_JUMP_TRUE1, -jumpDist, envPtr);
}
} else {
jumpDist = CurrentOffset(envPtr) - bodyCodeOffset;
if (jumpDist > 127) {
TclEmitInstInt4(INST_JUMP4, -jumpDist, envPtr);
} else {
TclEmitInstInt1(INST_JUMP1, -jumpDist, envPtr);
}
}
/*
* Set the loop's body, continue and break offsets.
*/
envPtr->exceptArrayPtr[range].continueOffset = testCodeOffset;
envPtr->exceptArrayPtr[range].codeOffset = bodyCodeOffset;
ExceptionRangeTarget(envPtr, range, breakOffset);
/*
* The while command's result is an empty string.
*/
pushResult:
envPtr->currStackDepth = savedStackDepth;
PushLiteral(envPtr, "", 0);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* PushVarName --
*
* Procedure used in the compiling where pushing a variable name is
* necessary (append, lappend, set).
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "set" command at
* runtime.
*
*----------------------------------------------------------------------
*/
static int
PushVarName(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Token *varTokenPtr, /* Points to a variable token. */
CompileEnv *envPtr, /* Holds resulting instructions. */
int flags, /* TCL_CREATE_VAR or TCL_NO_LARGE_INDEX. */
int *localIndexPtr, /* Must not be NULL. */
int *simpleVarNamePtr, /* Must not be NULL. */
int *isScalarPtr, /* Must not be NULL. */
int line, /* Line the token starts on. */
int* clNext) /* Reference to offset of next hidden cont. line */
{
register const char *p;
const char *name, *elName;
register int i, n;
Tcl_Token *elemTokenPtr = NULL;
int nameChars, elNameChars, simpleVarName, localIndex;
int elemTokenCount = 0, allocedTokens = 0, removedParen = 0;
/*
* Decide if we can use a frame slot for the var/array name or if we need
* to emit code to compute and push the name at runtime. We use a frame
* slot (entry in the array of local vars) if we are compiling a procedure
* body and if the name is simple text that does not include namespace
* qualifiers.
*/
simpleVarName = 0;
name = elName = NULL;
nameChars = elNameChars = 0;
localIndex = -1;
/*
* Check not only that the type is TCL_TOKEN_SIMPLE_WORD, but whether
* curly braces surround the variable name. This really matters for array
* elements to handle things like
* set {x($foo)} 5
* which raises an undefined var error if we are not careful here.
*/
if ((varTokenPtr->type == TCL_TOKEN_SIMPLE_WORD) &&
(varTokenPtr->start[0] != '{')) {
/*
* A simple variable name. Divide it up into "name" and "elName"
* strings. If it is not a local variable, look it up at runtime.
*/
simpleVarName = 1;
name = varTokenPtr[1].start;
nameChars = varTokenPtr[1].size;
if (name[nameChars-1] == ')') {
/*
* last char is ')' => potential array reference.
*/
for (i=0,p=name ; i<nameChars ; i++,p++) {
if (*p == '(') {
elName = p + 1;
elNameChars = nameChars - i - 2;
nameChars = i;
break;
}
}
if ((elName != NULL) && elNameChars) {
/*
* An array element, the element name is a simple string:
* assemble the corresponding token.
*/
elemTokenPtr = (Tcl_Token *) TclStackAlloc(interp,
sizeof(Tcl_Token));
allocedTokens = 1;
elemTokenPtr->type = TCL_TOKEN_TEXT;
elemTokenPtr->start = elName;
elemTokenPtr->size = elNameChars;
elemTokenPtr->numComponents = 0;
elemTokenCount = 1;
}
}
} else if (((n = varTokenPtr->numComponents) > 1)
&& (varTokenPtr[1].type == TCL_TOKEN_TEXT)
&& (varTokenPtr[n].type == TCL_TOKEN_TEXT)
&& (varTokenPtr[n].start[varTokenPtr[n].size - 1] == ')')) {
/*
* Check for parentheses inside first token.
*/
simpleVarName = 0;
for (i = 0, p = varTokenPtr[1].start;
i < varTokenPtr[1].size; i++, p++) {
if (*p == '(') {
simpleVarName = 1;
break;
}
}
if (simpleVarName) {
int remainingChars;
/*
* Check the last token: if it is just ')', do not count it.
* Otherwise, remove the ')' and flag so that it is restored at
* the end.
*/
if (varTokenPtr[n].size == 1) {
--n;
} else {
--varTokenPtr[n].size;
removedParen = n;
}
name = varTokenPtr[1].start;
nameChars = p - varTokenPtr[1].start;
elName = p + 1;
remainingChars = (varTokenPtr[2].start - p) - 1;
elNameChars = (varTokenPtr[n].start - p) + varTokenPtr[n].size - 2;
if (remainingChars) {
/*
* Make a first token with the extra characters in the first
* token.
*/
elemTokenPtr = (Tcl_Token *) TclStackAlloc(interp,
n * sizeof(Tcl_Token));
allocedTokens = 1;
elemTokenPtr->type = TCL_TOKEN_TEXT;
elemTokenPtr->start = elName;
elemTokenPtr->size = remainingChars;
elemTokenPtr->numComponents = 0;
elemTokenCount = n;
/*
* Copy the remaining tokens.
*/
memcpy(elemTokenPtr+1, varTokenPtr+2,
(n-1) * sizeof(Tcl_Token));
} else {
/*
* Use the already available tokens.
*/
elemTokenPtr = &varTokenPtr[2];
elemTokenCount = n - 1;
}
}
}
if (simpleVarName) {
/*
* See whether name has any namespace separators (::'s).
*/
int hasNsQualifiers = 0;
for (i = 0, p = name; i < nameChars; i++, p++) {
if ((*p == ':') && ((i+1) < nameChars) && (*(p+1) == ':')) {
hasNsQualifiers = 1;
break;
}
}
/*
* Look up the var name's index in the array of local vars in the proc
* frame. If retrieving the var's value and it doesn't already exist,
* push its name and look it up at runtime.
*/
if ((envPtr->procPtr != NULL) && !hasNsQualifiers) {
localIndex = TclFindCompiledLocal(name, nameChars,
/*create*/ flags & TCL_CREATE_VAR,
envPtr->procPtr);
if ((flags & TCL_NO_LARGE_INDEX) && (localIndex > 255)) {
/*
* We'll push the name.
*/
localIndex = -1;
}
}
if (localIndex < 0) {
PushLiteral(envPtr, name, nameChars);
}
/*
* Compile the element script, if any.
*/
if (elName != NULL) {
if (elNameChars) {
envPtr->line = line;
envPtr->clNext = clNext;
TclCompileTokens(interp, elemTokenPtr, elemTokenCount, envPtr);
} else {
PushLiteral(envPtr, "", 0);
}
}
} else {
/*
* The var name isn't simple: compile and push it.
*/
envPtr->line = line;
envPtr->clNext = clNext;
CompileTokens(envPtr, varTokenPtr, interp);
}
if (removedParen) {
++varTokenPtr[removedParen].size;
}
if (allocedTokens) {
TclStackFree(interp, elemTokenPtr);
}
*localIndexPtr = localIndex;
*simpleVarNamePtr = simpleVarName;
*isScalarPtr = (elName == NULL);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* CompileUnaryOpCmd --
*
* Utility routine to compile the unary operator commands.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the compiled command at
* runtime.
*
*----------------------------------------------------------------------
*/
static int
CompileUnaryOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
int instruction,
CompileEnv *envPtr)
{
Tcl_Token *tokenPtr;
DefineLineInformation; /* TIP #280 */
if (parsePtr->numWords != 2) {
return TCL_ERROR;
}
tokenPtr = TokenAfter(parsePtr->tokenPtr);
CompileWord(envPtr, tokenPtr, interp, 1);
TclEmitOpcode(instruction, envPtr);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* CompileAssociativeBinaryOpCmd --
*
* Utility routine to compile the binary operator commands that accept an
* arbitrary number of arguments, and that are associative operations.
* Because of the associativity, we may combine operations from right to
* left, saving us any effort of re-ordering the arguments on the stack
* after substitutions are completed.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the compiled command at
* runtime.
*
*----------------------------------------------------------------------
*/
static int
CompileAssociativeBinaryOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
const char *identity,
int instruction,
CompileEnv *envPtr)
{
Tcl_Token *tokenPtr = parsePtr->tokenPtr;
DefineLineInformation; /* TIP #280 */
int words;
for (words=1 ; words<parsePtr->numWords ; words++) {
tokenPtr = TokenAfter(tokenPtr);
CompileWord(envPtr, tokenPtr, interp, words);
}
if (parsePtr->numWords <= 2) {
PushLiteral(envPtr, identity, -1);
words++;
}
if (words > 3) {
/*
* Reverse order of arguments to get precise agreement with
* [expr] in calcuations, including roundoff errors.
*/
TclEmitInstInt4(INST_REVERSE, words-1, envPtr);
}
while (--words > 1) {
TclEmitOpcode(instruction, envPtr);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* CompileStrictlyBinaryOpCmd --
*
* Utility routine to compile the binary operator commands, that strictly
* accept exactly two arguments.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the compiled command at
* runtime.
*
*----------------------------------------------------------------------
*/
static int
CompileStrictlyBinaryOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
int instruction,
CompileEnv *envPtr)
{
if (parsePtr->numWords != 3) {
return TCL_ERROR;
}
return CompileAssociativeBinaryOpCmd(interp, parsePtr,
NULL, instruction, envPtr);
}
/*
*----------------------------------------------------------------------
*
* CompileComparisonOpCmd --
*
* Utility routine to compile the n-ary comparison operator commands.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the compiled command at
* runtime.
*
*----------------------------------------------------------------------
*/
static int
CompileComparisonOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
int instruction,
CompileEnv *envPtr)
{
Tcl_Token *tokenPtr;
DefineLineInformation; /* TIP #280 */
if (parsePtr->numWords < 3) {
PushLiteral(envPtr, "1", 1);
} else if (parsePtr->numWords == 3) {
tokenPtr = TokenAfter(parsePtr->tokenPtr);
CompileWord(envPtr, tokenPtr, interp, 1);
tokenPtr = TokenAfter(tokenPtr);
CompileWord(envPtr, tokenPtr, interp, 2);
TclEmitOpcode(instruction, envPtr);
} else if (envPtr->procPtr == NULL) {
/*
* No local variable space!
*/
return TCL_ERROR;
} else {
int tmpIndex = TclFindCompiledLocal(NULL, 0, 1, envPtr->procPtr);
int words;
tokenPtr = TokenAfter(parsePtr->tokenPtr);
CompileWord(envPtr, tokenPtr, interp, 1);
tokenPtr = TokenAfter(tokenPtr);
CompileWord(envPtr, tokenPtr, interp, 2);
if (tmpIndex <= 255) {
TclEmitInstInt1(INST_STORE_SCALAR1, tmpIndex, envPtr);
} else {
TclEmitInstInt4(INST_STORE_SCALAR4, tmpIndex, envPtr);
}
TclEmitOpcode(instruction, envPtr);
for (words=3 ; words<parsePtr->numWords ;) {
if (tmpIndex <= 255) {
TclEmitInstInt1(INST_LOAD_SCALAR1, tmpIndex, envPtr);
} else {
TclEmitInstInt4(INST_LOAD_SCALAR4, tmpIndex, envPtr);
}
tokenPtr = TokenAfter(tokenPtr);
CompileWord(envPtr, tokenPtr, interp, words);
if (++words < parsePtr->numWords) {
if (tmpIndex <= 255) {
TclEmitInstInt1(INST_STORE_SCALAR1, tmpIndex, envPtr);
} else {
TclEmitInstInt4(INST_STORE_SCALAR4, tmpIndex, envPtr);
}
}
TclEmitOpcode(instruction, envPtr);
}
for (; words>3 ; words--) {
TclEmitOpcode(INST_BITAND, envPtr);
}
/*
* Drop the value from the temp variable; retaining that reference
* might be expensive elsewhere.
*/
PushLiteral(envPtr, "", 0);
if (tmpIndex <= 255) {
TclEmitInstInt1(INST_STORE_SCALAR1, tmpIndex, envPtr);
} else {
TclEmitInstInt4(INST_STORE_SCALAR4, tmpIndex, envPtr);
}
TclEmitOpcode(INST_POP, envPtr);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompile*OpCmd --
*
* Procedures called to compile the corresponding "::tcl::mathop::*"
* commands. These are all wrappers around the utility operator command
* compiler functions, except for the compilers for subtraction and
* division, which are special.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the compiled command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileInvertOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileUnaryOpCmd(interp, parsePtr, INST_BITNOT, envPtr);
}
int
TclCompileNotOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileUnaryOpCmd(interp, parsePtr, INST_LNOT, envPtr);
}
int
TclCompileAddOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileAssociativeBinaryOpCmd(interp, parsePtr, "0", INST_ADD,
envPtr);
}
int
TclCompileMulOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileAssociativeBinaryOpCmd(interp, parsePtr, "1", INST_MULT,
envPtr);
}
int
TclCompileAndOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileAssociativeBinaryOpCmd(interp, parsePtr, "-1", INST_BITAND,
envPtr);
}
int
TclCompileOrOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileAssociativeBinaryOpCmd(interp, parsePtr, "0", INST_BITOR,
envPtr);
}
int
TclCompileXorOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileAssociativeBinaryOpCmd(interp, parsePtr, "0", INST_BITXOR,
envPtr);
}
int
TclCompilePowOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
/*
* This one has its own implementation because the ** operator is
* the only one with right associativity.
*/
Tcl_Token *tokenPtr = parsePtr->tokenPtr;
DefineLineInformation; /* TIP #280 */
int words;
for (words=1 ; words<parsePtr->numWords ; words++) {
tokenPtr = TokenAfter(tokenPtr);
CompileWord(envPtr, tokenPtr, interp, words);
}
if (parsePtr->numWords <= 2) {
PushLiteral(envPtr, "1", 1);
words++;
}
while (--words > 1) {
TclEmitOpcode(INST_EXPON, envPtr);
}
return TCL_OK;
}
int
TclCompileLshiftOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileStrictlyBinaryOpCmd(interp, parsePtr, INST_LSHIFT, envPtr);
}
int
TclCompileRshiftOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileStrictlyBinaryOpCmd(interp, parsePtr, INST_RSHIFT, envPtr);
}
int
TclCompileModOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileStrictlyBinaryOpCmd(interp, parsePtr, INST_MOD, envPtr);
}
int
TclCompileNeqOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileStrictlyBinaryOpCmd(interp, parsePtr, INST_NEQ, envPtr);
}
int
TclCompileStrneqOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileStrictlyBinaryOpCmd(interp, parsePtr, INST_STR_NEQ, envPtr);
}
int
TclCompileInOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileStrictlyBinaryOpCmd(interp, parsePtr, INST_LIST_IN, envPtr);
}
int
TclCompileNiOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileStrictlyBinaryOpCmd(interp, parsePtr, INST_LIST_NOT_IN,
envPtr);
}
int
TclCompileLessOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileComparisonOpCmd(interp, parsePtr, INST_LT, envPtr);
}
int
TclCompileLeqOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileComparisonOpCmd(interp, parsePtr, INST_LE, envPtr);
}
int
TclCompileGreaterOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileComparisonOpCmd(interp, parsePtr, INST_GT, envPtr);
}
int
TclCompileGeqOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileComparisonOpCmd(interp, parsePtr, INST_GE, envPtr);
}
int
TclCompileEqOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileComparisonOpCmd(interp, parsePtr, INST_EQ, envPtr);
}
int
TclCompileStreqOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
return CompileComparisonOpCmd(interp, parsePtr, INST_STR_EQ, envPtr);
}
int
TclCompileMinusOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
Tcl_Token *tokenPtr = parsePtr->tokenPtr;
DefineLineInformation; /* TIP #280 */
int words;
if (parsePtr->numWords == 1) {
/* Fallback to direct eval to report syntax error */
return TCL_ERROR;
}
for (words=1 ; words<parsePtr->numWords ; words++) {
tokenPtr = TokenAfter(tokenPtr);
CompileWord(envPtr, tokenPtr, interp, words);
}
if (words == 2) {
TclEmitOpcode(INST_UMINUS, envPtr);
return TCL_OK;
}
if (words == 3) {
TclEmitOpcode(INST_SUB, envPtr);
return TCL_OK;
}
/*
* Reverse order of arguments to get precise agreement with
* [expr] in calcuations, including roundoff errors.
*/
TclEmitInstInt4(INST_REVERSE, words-1, envPtr);
while (--words > 1) {
TclEmitInstInt4(INST_REVERSE, 2, envPtr);
TclEmitOpcode(INST_SUB, envPtr);
}
return TCL_OK;
}
int
TclCompileDivOpCmd(
Tcl_Interp *interp,
Tcl_Parse *parsePtr,
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr)
{
Tcl_Token *tokenPtr = parsePtr->tokenPtr;
DefineLineInformation; /* TIP #280 */
int words;
if (parsePtr->numWords == 1) {
/* Fallback to direct eval to report syntax error */
return TCL_ERROR;
}
if (parsePtr->numWords == 2) {
PushLiteral(envPtr, "1.0", 3);
}
for (words=1 ; words<parsePtr->numWords ; words++) {
tokenPtr = TokenAfter(tokenPtr);
CompileWord(envPtr, tokenPtr, interp, words);
}
if (words <= 3) {
TclEmitOpcode(INST_DIV, envPtr);
return TCL_OK;
}
/*
* Reverse order of arguments to get precise agreement with
* [expr] in calcuations, including roundoff errors.
*/
TclEmitInstInt4(INST_REVERSE, words-1, envPtr);
while (--words > 1) {
TclEmitInstInt4(INST_REVERSE, 2, envPtr);
TclEmitOpcode(INST_DIV, envPtr);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* IndexTailVarIfKnown --
*
* Procedure used in compiling [global] and [variable] commands. It
* inspects the variable name described by varTokenPtr and, if the tail
* is known at compile time, defines a corresponding local variable.
*
* Results:
* Returns the variable's index in the table of compiled locals if the
* tail is known at compile time, or -1 otherwise.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int
IndexTailVarIfKnown(
Tcl_Interp *interp,
Tcl_Token *varTokenPtr, /* Token representing the variable name */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Obj *tailPtr;
const char *tailName, *p;
int len, n = varTokenPtr->numComponents;
Tcl_Token *lastTokenPtr;
int full, localIndex;
/*
* Determine if the tail is (a) known at compile time, and (b) not an
* array element. Should any of these fail, return an error so that
* the non-compiled command will be called at runtime.
* In order for the tail to be known at compile time, the last token
* in the word has to be constant and contain "::" if it is not the
* only one.
*/
if (envPtr->procPtr == NULL) {
return -1;
}
TclNewObj(tailPtr);
if (TclWordKnownAtCompileTime(varTokenPtr, tailPtr)) {
full = 1;
lastTokenPtr = varTokenPtr;
} else {
full = 0;
lastTokenPtr = varTokenPtr + n;
if (!TclWordKnownAtCompileTime(lastTokenPtr, tailPtr)) {
Tcl_DecrRefCount(tailPtr);
return -1;
}
}
tailName = TclGetStringFromObj(tailPtr, &len);
if (len) {
if (*(tailName+len-1) == ')') {
/*
* Possible array: bail out
*/
Tcl_DecrRefCount(tailPtr);
return -1;
}
/*
* Get the tail: immediately after the last '::'
*/
for(p = tailName + len -1; p > tailName; p--) {
if ((*p == ':') && (*(p-1) == ':')) {
p++;
break;
}
}
if (!full && (p == tailName)) {
/*
* No :: in the last component
*/
Tcl_DecrRefCount(tailPtr);
return -1;
}
len -= p - tailName;
tailName = p;
}
localIndex = TclFindCompiledLocal(tailName, len,
/*create*/ TCL_CREATE_VAR,
envPtr->procPtr);
Tcl_DecrRefCount(tailPtr);
return localIndex;
}
/*
*----------------------------------------------------------------------
*
* TclCompileUpvarCmd --
*
* Procedure called to compile the "upvar" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "upvar" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileUpvarCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *tokenPtr, *otherTokenPtr, *localTokenPtr;
int simpleVarName, isScalar, localIndex, numWords, i;
DefineLineInformation; /* TIP #280 */
Tcl_Obj *objPtr = Tcl_NewObj();
if (envPtr->procPtr == NULL) {
Tcl_DecrRefCount(objPtr);
return TCL_ERROR;
}
numWords = parsePtr->numWords;
if (numWords < 3) {
Tcl_DecrRefCount(objPtr);
return TCL_ERROR;
}
/*
* Push the frame index if it is known at compile time
*/
tokenPtr = TokenAfter(parsePtr->tokenPtr);
if(TclWordKnownAtCompileTime(tokenPtr, objPtr)) {
CallFrame *framePtr;
Tcl_ObjType *newTypePtr, *typePtr = objPtr->typePtr;
/*
* Attempt to convert to a level reference. Note that TclObjGetFrame
* only changes the obj type when a conversion was successful.
*/
TclObjGetFrame(interp, objPtr, &framePtr);
newTypePtr = objPtr->typePtr;
Tcl_DecrRefCount(objPtr);
if (newTypePtr != typePtr) {
if(numWords%2) {
return TCL_ERROR;
}
CompileWord(envPtr, tokenPtr, interp, 1);
otherTokenPtr = TokenAfter(tokenPtr);
i = 4;
} else {
if(!(numWords%2)) {
return TCL_ERROR;
}
PushLiteral(envPtr, "1", 1);
otherTokenPtr = tokenPtr;
i = 3;
}
} else {
Tcl_DecrRefCount(objPtr);
return TCL_ERROR;
}
/*
* Loop over the (otherVar, thisVar) pairs. If any of the thisVar is not a
* local variable, return an error so that the non-compiled command will
* be called at runtime.
*/
for(; i<=numWords; i+=2, otherTokenPtr = TokenAfter(localTokenPtr)) {
localTokenPtr = TokenAfter(otherTokenPtr);
CompileWord(envPtr, otherTokenPtr, interp, 1);
PushVarNameWord(interp, localTokenPtr, envPtr, TCL_CREATE_VAR,
&localIndex, &simpleVarName, &isScalar, 1);
if((localIndex < 0) || !isScalar) {
return TCL_ERROR;
}
TclEmitInstInt4(INST_UPVAR, localIndex, envPtr);
}
/*
* Pop the frame index, and set the result to empty
*/
TclEmitOpcode(INST_POP, envPtr);
PushLiteral(envPtr, "", 0);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileNamespaceCmd --
*
* Procedure called to compile the "namespace" command; currently, only
* the subcommand "namespace upvar" is compiled to bytecodes.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "namespace upvar"
* command at runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileNamespaceCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *tokenPtr, *otherTokenPtr, *localTokenPtr;
int simpleVarName, isScalar, localIndex, numWords, i;
DefineLineInformation; /* TIP #280 */
if (envPtr->procPtr == NULL) {
return TCL_ERROR;
}
/*
* Only compile [namespace upvar ...]: needs an odd number of args, >=5
*/
numWords = parsePtr->numWords;
if (!(numWords%2) || (numWords < 5)) {
return TCL_ERROR;
}
/*
* Check if the second argument is "upvar"
*/
tokenPtr = TokenAfter(parsePtr->tokenPtr);
if ((tokenPtr->size != 5) /* 5 == strlen("upvar") */
|| strncmp(tokenPtr->start, "upvar", 5)) {
return TCL_ERROR;
}
/*
* Push the namespace
*/
tokenPtr = TokenAfter(tokenPtr);
CompileWord(envPtr, tokenPtr, interp, 1);
/*
* Loop over the (otherVar, thisVar) pairs. If any of the thisVar is not a
* local variable, return an error so that the non-compiled command will
* be called at runtime.
*/
localTokenPtr = tokenPtr;
for(i=4; i<=numWords; i+=2) {
otherTokenPtr = TokenAfter(localTokenPtr);
localTokenPtr = TokenAfter(otherTokenPtr);
CompileWord(envPtr, otherTokenPtr, interp, 1);
PushVarNameWord(interp, localTokenPtr, envPtr, TCL_CREATE_VAR,
&localIndex, &simpleVarName, &isScalar, 1);
if((localIndex < 0) || !isScalar) {
return TCL_ERROR;
}
TclEmitInstInt4(INST_NSUPVAR, localIndex, envPtr);
}
/*
* Pop the namespace, and set the result to empty
*/
TclEmitOpcode(INST_POP, envPtr);
PushLiteral(envPtr, "", 0);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileGlobalCmd --
*
* Procedure called to compile the "global" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "global" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileGlobalCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *varTokenPtr;
int localIndex, numWords, i;
DefineLineInformation; /* TIP #280 */
numWords = parsePtr->numWords;
if (numWords < 2) {
return TCL_ERROR;
}
/*
* 'global' has no effect outside of proc bodies; handle that at runtime
*/
if (envPtr->procPtr == NULL) {
return TCL_ERROR;
}
/*
* Push the namespace
*/
PushLiteral(envPtr, "::", 2);
/*
* Loop over the variables.
*/
varTokenPtr = TokenAfter(parsePtr->tokenPtr);
for(i=2; i<=numWords; varTokenPtr = TokenAfter(varTokenPtr),i++) {
localIndex = IndexTailVarIfKnown(interp, varTokenPtr, envPtr);
if(localIndex < 0) {
return TCL_ERROR;
}
CompileWord(envPtr, varTokenPtr, interp, 1);
TclEmitInstInt4(INST_NSUPVAR, localIndex, envPtr);
}
/*
* Pop the namespace, and set the result to empty
*/
TclEmitOpcode(INST_POP, envPtr);
PushLiteral(envPtr, "", 0);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileVariableCmd --
*
* Procedure called to compile the "variable" command.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "variable" command at
* runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileVariableCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *varTokenPtr, *valueTokenPtr;
int localIndex, numWords, i;
DefineLineInformation; /* TIP #280 */
numWords = parsePtr->numWords;
if (numWords < 2) {
return TCL_ERROR;
}
/*
* Bail out if not compiling a proc body
*/
if (envPtr->procPtr == NULL) {
return TCL_ERROR;
}
/*
* Loop over the (var, value) pairs.
*/
valueTokenPtr = parsePtr->tokenPtr;
for(i=2; i<=numWords; i+=2) {
varTokenPtr = TokenAfter(valueTokenPtr);
valueTokenPtr = TokenAfter(varTokenPtr);
localIndex = IndexTailVarIfKnown(interp, varTokenPtr, envPtr);
if(localIndex < 0) {
return TCL_ERROR;
}
CompileWord(envPtr, varTokenPtr, interp, 1);
TclEmitInstInt4(INST_VARIABLE, localIndex, envPtr);
if (i != numWords) {
/*
* A value has been given: set the variable, pop the value
*/
CompileWord(envPtr, valueTokenPtr, interp, 1);
TclEmitInstInt4(INST_STORE_SCALAR4, localIndex, envPtr);
TclEmitOpcode(INST_POP, envPtr);
}
}
/*
* Set the result to empty
*/
PushLiteral(envPtr, "", 0);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCompileEnsemble --
*
* Procedure called to compile an ensemble command. Note that most
* ensembles are not compiled, since modifying a compiled ensemble causes
* a invalidation of all existing bytecode (expensive!) which is not
* normally warranted.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the subcommands of the
* ensemble at runtime if a compile-time mapping is possible.
*
*----------------------------------------------------------------------
*/
int
TclCompileEnsemble(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *tokenPtr;
Tcl_Obj *mapObj, *subcmdObj, *targetCmdObj, *listObj, **elems;
Tcl_Command ensemble = (Tcl_Command) cmdPtr;
Tcl_Parse synthetic;
int len, numBytes, result, flags = 0, i;
const char *word;
if (parsePtr->numWords < 2) {
return TCL_ERROR;
}
tokenPtr = TokenAfter(parsePtr->tokenPtr);
if (tokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
/*
* Too hard.
*/
return TCL_ERROR;
}
word = tokenPtr[1].start;
numBytes = tokenPtr[1].size;
/*
* There's a sporting chance we'll be able to compile this. But now we
* must check properly. To do that, check that we're compiling an ensemble
* that has a compilable command as its appropriate subcommand.
*/
if (Tcl_GetEnsembleMappingDict(NULL, ensemble, &mapObj) != TCL_OK
|| mapObj == NULL) {
/*
* Either not an ensemble or a mapping isn't installed. Crud. Too hard
* to proceed.
*/
return TCL_ERROR;
}
/*
* Next, get the flags. We need them on several code paths.
*/
(void) Tcl_GetEnsembleFlags(NULL, ensemble, &flags);
/*
* Check to see if there's also a subcommand list; must check to see if
* the subcommand we are calling is in that list if it exists, since that
* list filters the entries in the map.
*/
(void) Tcl_GetEnsembleSubcommandList(NULL, ensemble, &listObj);
if (listObj != NULL) {
int sclen;
const char *str;
Tcl_Obj *matchObj = NULL;
if (Tcl_ListObjGetElements(NULL, listObj, &len, &elems) != TCL_OK) {
return TCL_ERROR;
}
for (i=0 ; i<len ; i++) {
str = Tcl_GetStringFromObj(elems[i], &sclen);
if (sclen==numBytes && !memcmp(word, str, (unsigned) numBytes)) {
/*
* Exact match! Excellent!
*/
result = Tcl_DictObjGet(NULL, mapObj,elems[i], &targetCmdObj);
if (result != TCL_OK || targetCmdObj == NULL) {
return TCL_ERROR;
}
goto doneMapLookup;
}
/*
* Check to see if we've got a prefix match. A single prefix match
* is fine, and allows us to refine our dictionary lookup, but
* multiple prefix matches is a Bad Thing and will prevent us from
* making progress. Note that we cannot do the lookup immediately
* in the prefix case; might be another entry later in the list
* that causes things to fail.
*/
if ((flags & TCL_ENSEMBLE_PREFIX)
&& strncmp(word, str, (unsigned) numBytes) == 0) {
if (matchObj != NULL) {
return TCL_ERROR;
}
matchObj = elems[i];
}
}
if (matchObj != NULL) {
result = Tcl_DictObjGet(NULL, mapObj, matchObj, &targetCmdObj);
if (result != TCL_OK || targetCmdObj == NULL) {
return TCL_ERROR;
}
goto doneMapLookup;
}
return TCL_ERROR;
} else {
/*
* No map, so check the dictionary directly.
*/
TclNewStringObj(subcmdObj, word, numBytes);
result = Tcl_DictObjGet(NULL, mapObj, subcmdObj, &targetCmdObj);
TclDecrRefCount(subcmdObj);
if (result == TCL_OK && targetCmdObj != NULL) {
/*
* Got it. Skip the fiddling around with prefixes.
*/
goto doneMapLookup;
}
/*
* We've not literally got a valid subcommand. But maybe we have a
* prefix. Check if prefix matches are allowed.
*/
if (flags & TCL_ENSEMBLE_PREFIX) {
Tcl_DictSearch s;
int done, matched;
Tcl_Obj *tmpObj;
/*
* Iterate over the keys in the dictionary, checking to see if
* we're a prefix.
*/
Tcl_DictObjFirst(NULL,mapObj,&s,&subcmdObj,&tmpObj,&done);
matched = 0;
while (!done) {
if (strncmp(TclGetString(subcmdObj), word,
(unsigned) numBytes) == 0) {
if (matched++) {
/*
* Must have matched twice! Not unique, so no point
* looking further.
*/
break;
}
targetCmdObj = tmpObj;
}
Tcl_DictObjNext(&s, &subcmdObj, &tmpObj, &done);
}
Tcl_DictObjDone(&s);
/*
* If we have anything other than a single match, we've failed the
* unique prefix check.
*/
if (matched != 1) {
return TCL_ERROR;
}
} else {
return TCL_ERROR;
}
}
/*
* OK, we definitely map to something. But what?
*
* The command we map to is the first word out of the map element. Note
* that we also reject dealing with multi-element rewrites if we are in a
* safe interpreter, as there is otherwise a (highly gnarly!) way to make
* Tcl crash open to exploit.
*/
doneMapLookup:
if (Tcl_ListObjGetElements(NULL, targetCmdObj, &len, &elems) != TCL_OK) {
return TCL_ERROR;
}
if (len > 1 && Tcl_IsSafe(interp)) {
return TCL_ERROR;
}
targetCmdObj = elems[0];
Tcl_IncrRefCount(targetCmdObj);
cmdPtr = (Command *) Tcl_GetCommandFromObj(interp, targetCmdObj);
TclDecrRefCount(targetCmdObj);
if (cmdPtr == NULL || cmdPtr->compileProc == NULL) {
/*
* Maps to an undefined command or a command without a compiler.
* Cannot compile.
*/
return TCL_ERROR;
}
/*
* Now we've done the mapping process, can now actually try to compile.
* We do this by handing off to the subcommand's actual compiler. But to
* do that, we have to perform some trickery to rewrite the arguments.
*/
TclParseInit(interp, NULL, 0, &synthetic);
synthetic.numWords = parsePtr->numWords - 2 + len;
TclGrowParseTokenArray(&synthetic, 2*len);
synthetic.numTokens = 2*len;
/*
* Now we have the space to work in, install something rewritten. Note
* that we are here praying for all our might that none of these words are
* a script; the error detection code will crash if that happens and there
* is nothing we can do to avoid it!
*/
for (i=0 ; i<len ; i++) {
int sclen;
const char *str = Tcl_GetStringFromObj(elems[i], &sclen);
synthetic.tokenPtr[2*i].type = TCL_TOKEN_SIMPLE_WORD;
synthetic.tokenPtr[2*i].start = str;
synthetic.tokenPtr[2*i].size = sclen;
synthetic.tokenPtr[2*i].numComponents = 1;
synthetic.tokenPtr[2*i+1].type = TCL_TOKEN_TEXT;
synthetic.tokenPtr[2*i+1].start = str;
synthetic.tokenPtr[2*i+1].size = sclen;
synthetic.tokenPtr[2*i+1].numComponents = 0;
}
/*
* Copy over the real argument tokens.
*/
for (i=len; i<synthetic.numWords; i++) {
int toCopy;
tokenPtr = TokenAfter(tokenPtr);
toCopy = tokenPtr->numComponents + 1;
TclGrowParseTokenArray(&synthetic, toCopy);
memcpy(synthetic.tokenPtr + synthetic.numTokens, tokenPtr,
sizeof(Tcl_Token) * toCopy);
synthetic.numTokens += toCopy;
}
/*
* Hand off compilation to the subcommand compiler. At last!
*/
result = cmdPtr->compileProc(interp, &synthetic, cmdPtr, envPtr);
/*
* Clean up if necessary.
*/
Tcl_FreeParse(&synthetic);
return result;
}
/*
*----------------------------------------------------------------------
*
* TclCompileInfoExistsCmd --
*
* Procedure called to compile the "info exists" subcommand.
*
* Results:
* Returns TCL_OK for a successful compile. Returns TCL_ERROR to defer
* evaluation to runtime.
*
* Side effects:
* Instructions are added to envPtr to execute the "info exists"
* subcommand at runtime.
*
*----------------------------------------------------------------------
*/
int
TclCompileInfoExistsCmd(
Tcl_Interp *interp, /* Used for error reporting. */
Tcl_Parse *parsePtr, /* Points to a parse structure for the command
* created by Tcl_ParseCommand. */
Command *cmdPtr, /* Points to defintion of command being
* compiled. */
CompileEnv *envPtr) /* Holds resulting instructions. */
{
Tcl_Token *tokenPtr;
int isScalar, simpleVarName, localIndex;
DefineLineInformation; /* TIP #280 */
if (parsePtr->numWords != 2) {
return TCL_ERROR;
}
/*
* Decide if we can use a frame slot for the var/array name or if we need
* to emit code to compute and push the name at runtime. We use a frame
* slot (entry in the array of local vars) if we are compiling a procedure
* body and if the name is simple text that does not include namespace
* qualifiers.
*/
tokenPtr = TokenAfter(parsePtr->tokenPtr);
PushVarNameWord(interp, tokenPtr, envPtr, TCL_CREATE_VAR, &localIndex,
&simpleVarName, &isScalar, 1);
/*
* Emit instruction to check the variable for existence.
*/
if (simpleVarName) {
if (isScalar) {
if (localIndex < 0) {
TclEmitOpcode(INST_EXIST_STK, envPtr);
} else {
TclEmitInstInt4(INST_EXIST_SCALAR, localIndex, envPtr);
}
} else {
if (localIndex < 0) {
TclEmitOpcode(INST_EXIST_ARRAY_STK, envPtr);
} else {
TclEmitInstInt4(INST_EXIST_ARRAY, localIndex, envPtr);
}
}
} else {
TclEmitOpcode(INST_EXIST_STK, envPtr);
}
return TCL_OK;
}
/*
* Local Variables:
* mode: c
* c-basic-offset: 4
* fill-column: 78
* End:
*/
|