/*
* tclInt.h --
*
* Declarations of things used internally by the Tcl interpreter.
*
* Copyright (c) 1987-1993 The Regents of the University of California.
* Copyright (c) 1993-1997 Lucent Technologies.
* Copyright (c) 1994-1998 Sun Microsystems, Inc.
* Copyright (c) 1998-1999 by Scriptics Corporation.
* Copyright (c) 2001, 2002 by Kevin B. Kenny. All rights reserved.
* Copyright (c) 2007 Daniel A. Steffen <[email protected]>
*
* See the file "license.terms" for information on usage and redistribution of
* this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
* RCS: @(#) $Id: tclInt.h,v 1.362.2.14 2010/07/25 10:13:48 nijtmans Exp $
*/
#ifndef _TCLINT
#define _TCLINT
/*
* Some numerics configuration options.
*/
#undef NO_WIDE_TYPE
#undef ACCEPT_NAN
/*
* Common include files needed by most of the Tcl source files are included
* here, so that system-dependent personalizations for the include files only
* have to be made in once place. This results in a few extra includes, but
* greater modularity. The order of the three groups of #includes is
* important. For example, stdio.h is needed by tcl.h, and the _ANSI_ARGS_
* declaration in tcl.h is needed by stdlib.h in some configurations.
*/
#include "tclPort.h"
#include <stdio.h>
#include <ctype.h>
#ifdef NO_STDLIB_H
# include "../compat/stdlib.h"
#else
# include <stdlib.h>
#endif
#ifdef NO_STRING_H
#include "../compat/string.h"
#else
#include <string.h>
#endif
#ifdef STDC_HEADERS
#include <stddef.h>
#else
typedef int ptrdiff_t;
#endif
/*
* Ensure WORDS_BIGENDIAN is defined correctly:
* Needs to happen here in addition to configure to work with fat compiles on
* Darwin (where configure runs only once for multiple architectures).
*/
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
#endif
#ifdef HAVE_SYS_PARAM_H
# include <sys/param.h>
#endif
#ifdef BYTE_ORDER
# ifdef BIG_ENDIAN
# if BYTE_ORDER == BIG_ENDIAN
# undef WORDS_BIGENDIAN
# define WORDS_BIGENDIAN 1
# endif
# endif
# ifdef LITTLE_ENDIAN
# if BYTE_ORDER == LITTLE_ENDIAN
# undef WORDS_BIGENDIAN
# endif
# endif
#endif
/*
* Used to tag functions that are only to be visible within the module being
* built and not outside it (where this is supported by the linker).
*/
#ifndef MODULE_SCOPE
# ifdef __cplusplus
# define MODULE_SCOPE extern "C"
# else
# define MODULE_SCOPE extern
# endif
#endif
/*
* When Tcl_WideInt and long are the same type, there's no value in
* having a tclWideIntType separate from the tclIntType.
*/
#ifdef TCL_WIDE_INT_IS_LONG
#define NO_WIDE_TYPE
#endif
/*
* Macros used to cast between pointers and integers (e.g. when storing an int
* in ClientData), on 64-bit architectures they avoid gcc warning about "cast
* to/from pointer from/to integer of different size".
*/
#if !defined(INT2PTR) && !defined(PTR2INT)
# if defined(HAVE_INTPTR_T) || defined(intptr_t)
# define INT2PTR(p) ((void *)(intptr_t)(p))
# define PTR2INT(p) ((int)(intptr_t)(p))
# else
# define INT2PTR(p) ((void *)(p))
# define PTR2INT(p) ((int)(p))
# endif
#endif
#if !defined(UINT2PTR) && !defined(PTR2UINT)
# if defined(HAVE_UINTPTR_T) || defined(uintptr_t)
# define UINT2PTR(p) ((void *)(uintptr_t)(p))
# define PTR2UINT(p) ((unsigned int)(uintptr_t)(p))
# else
# define UINT2PTR(p) ((void *)(p))
# define PTR2UINT(p) ((unsigned int)(p))
# endif
#endif
/*
* The following procedures allow namespaces to be customized to support
* special name resolution rules for commands/variables.
*/
struct Tcl_ResolvedVarInfo;
typedef Tcl_Var (Tcl_ResolveRuntimeVarProc)(Tcl_Interp *interp,
struct Tcl_ResolvedVarInfo *vinfoPtr);
typedef void (Tcl_ResolveVarDeleteProc)(struct Tcl_ResolvedVarInfo *vinfoPtr);
/*
* The following structure encapsulates the routines needed to resolve a
* variable reference at runtime. Any variable specific state will typically
* be appended to this structure.
*/
typedef struct Tcl_ResolvedVarInfo {
Tcl_ResolveRuntimeVarProc *fetchProc;
Tcl_ResolveVarDeleteProc *deleteProc;
} Tcl_ResolvedVarInfo;
typedef int (Tcl_ResolveCompiledVarProc)(Tcl_Interp *interp,
CONST84 char *name, int length, Tcl_Namespace *context,
Tcl_ResolvedVarInfo **rPtr);
typedef int (Tcl_ResolveVarProc)(Tcl_Interp *interp, CONST84 char *name,
Tcl_Namespace *context, int flags, Tcl_Var *rPtr);
typedef int (Tcl_ResolveCmdProc)(Tcl_Interp *interp, CONST84 char *name,
Tcl_Namespace *context, int flags, Tcl_Command *rPtr);
typedef struct Tcl_ResolverInfo {
Tcl_ResolveCmdProc *cmdResProc;
/* Procedure handling command name
* resolution. */
Tcl_ResolveVarProc *varResProc;
/* Procedure handling variable name resolution
* for variables that can only be handled at
* runtime. */
Tcl_ResolveCompiledVarProc *compiledVarResProc;
/* Procedure handling variable name resolution
* at compile time. */
} Tcl_ResolverInfo;
/*
*----------------------------------------------------------------
* Data structures related to namespaces.
*----------------------------------------------------------------
*/
typedef struct Tcl_Ensemble Tcl_Ensemble;
typedef struct NamespacePathEntry NamespacePathEntry;
/*
* Special hashtable for variables: this is just a Tcl_HashTable with an nsPtr
* field added at the end: in this way variables can find their namespace
* without having to copy a pointer in their struct: they can access it via
* their hPtr->tablePtr.
*/
typedef struct TclVarHashTable {
Tcl_HashTable table;
struct Namespace *nsPtr;
} TclVarHashTable;
/*
* This is for itcl - it likes to search our varTables directly :(
*/
#define TclVarHashFindVar(tablePtr, key) \
TclVarHashCreateVar((tablePtr), (key), NULL)
/*
* The structure below defines a namespace.
* Note: the first five fields must match exactly the fields in a
* Tcl_Namespace structure (see tcl.h). If you change one, be sure to change
* the other.
*/
typedef struct Namespace {
char *name; /* The namespace's simple (unqualified) name.
* This contains no ::'s. The name of the
* global namespace is "" although "::" is an
* synonym. */
char *fullName; /* The namespace's fully qualified name. This
* starts with ::. */
ClientData clientData; /* An arbitrary value associated with this
* namespace. */
Tcl_NamespaceDeleteProc *deleteProc;
/* Procedure invoked when deleting the
* namespace to, e.g., free clientData. */
struct Namespace *parentPtr;/* Points to the namespace that contains this
* one. NULL if this is the global
* namespace. */
Tcl_HashTable childTable; /* Contains any child namespaces. Indexed by
* strings; values have type (Namespace *). */
long nsId; /* Unique id for the namespace. */
Tcl_Interp *interp; /* The interpreter containing this
* namespace. */
int flags; /* OR-ed combination of the namespace status
* flags NS_DYING and NS_DEAD listed below. */
int activationCount; /* Number of "activations" or active call
* frames for this namespace that are on the
* Tcl call stack. The namespace won't be
* freed until activationCount becomes zero. */
int refCount; /* Count of references by namespaceName
* objects. The namespace can't be freed until
* refCount becomes zero. */
Tcl_HashTable cmdTable; /* Contains all the commands currently
* registered in the namespace. Indexed by
* strings; values have type (Command *).
* Commands imported by Tcl_Import have
* Command structures that point (via an
* ImportedCmdRef structure) to the Command
* structure in the source namespace's command
* table. */
TclVarHashTable varTable; /* Contains all the (global) variables
* currently in this namespace. Indexed by
* strings; values have type (Var *). */
char **exportArrayPtr; /* Points to an array of string patterns
* specifying which commands are exported. A
* pattern may include "string match" style
* wildcard characters to specify multiple
* commands; however, no namespace qualifiers
* are allowed. NULL if no export patterns are
* registered. */
int numExportPatterns; /* Number of export patterns currently
* registered using "namespace export". */
int maxExportPatterns; /* Mumber of export patterns for which space
* is currently allocated. */
int cmdRefEpoch; /* Incremented if a newly added command
* shadows a command for which this namespace
* has already cached a Command* pointer; this
* causes all its cached Command* pointers to
* be invalidated. */
int resolverEpoch; /* Incremented whenever (a) the name
* resolution rules change for this namespace
* or (b) a newly added command shadows a
* command that is compiled to bytecodes. This
* invalidates all byte codes compiled in the
* namespace, causing the code to be
* recompiled under the new rules.*/
Tcl_ResolveCmdProc *cmdResProc;
/* If non-null, this procedure overrides the
* usual command resolution mechanism in Tcl.
* This procedure is invoked within
* Tcl_FindCommand to resolve all command
* references within the namespace. */
Tcl_ResolveVarProc *varResProc;
/* If non-null, this procedure overrides the
* usual variable resolution mechanism in Tcl.
* This procedure is invoked within
* Tcl_FindNamespaceVar to resolve all
* variable references within the namespace at
* runtime. */
Tcl_ResolveCompiledVarProc *compiledVarResProc;
/* If non-null, this procedure overrides the
* usual variable resolution mechanism in Tcl.
* This procedure is invoked within
* LookupCompiledLocal to resolve variable
* references within the namespace at compile
* time. */
int exportLookupEpoch; /* Incremented whenever a command is added to
* a namespace, removed from a namespace or
* the exports of a namespace are changed.
* Allows TIP#112-driven command lists to be
* validated efficiently. */
Tcl_Ensemble *ensembles; /* List of structures that contain the details
* of the ensembles that are implemented on
* top of this namespace. */
Tcl_Obj *unknownHandlerPtr; /* A script fragment to be used when command
* resolution in this namespace fails. TIP
* 181. */
int commandPathLength; /* The length of the explicit path. */
NamespacePathEntry *commandPathArray;
/* The explicit path of the namespace as an
* array. */
NamespacePathEntry *commandPathSourceList;
/* Linked list of path entries that point to
* this namespace. */
} Namespace;
/*
* An entry on a namespace's command resolution path.
*/
struct NamespacePathEntry {
Namespace *nsPtr; /* What does this path entry point to? If it
* is NULL, this path entry points is
* redundant and should be skipped. */
Namespace *creatorNsPtr; /* Where does this path entry point from? This
* allows for efficient invalidation of
* references when the path entry's target
* updates its current list of defined
* commands. */
NamespacePathEntry *prevPtr, *nextPtr;
/* Linked list pointers or NULL at either end
* of the list that hangs off Namespace's
* commandPathSourceList field. */
};
/*
* Flags used to represent the status of a namespace:
*
* NS_DYING - 1 means Tcl_DeleteNamespace has been called to delete the
* namespace but there are still active call frames on the Tcl
* stack that refer to the namespace. When the last call frame
* referring to it has been popped, it's variables and command
* will be destroyed and it will be marked "dead" (NS_DEAD). The
* namespace can no longer be looked up by name.
* NS_DEAD - 1 means Tcl_DeleteNamespace has been called to delete the
* namespace and no call frames still refer to it. Its variables
* and command have already been destroyed. This bit allows the
* namespace resolution code to recognize that the namespace is
* "deleted". When the last namespaceName object in any byte code
* unit that refers to the namespace has been freed (i.e., when
* the namespace's refCount is 0), the namespace's storage will
* be freed.
* NS_KILLED 1 means that TclTeardownNamespace has already been called on
* this namespace and it should not be called again [Bug 1355942]
*/
#define NS_DYING 0x01
#define NS_DEAD 0x02
#define NS_KILLED 0x04
/*
* Flags passed to TclGetNamespaceForQualName:
*
* TCL_GLOBAL_ONLY - (see tcl.h) Look only in the global ns.
* TCL_NAMESPACE_ONLY - (see tcl.h) Look only in the context ns.
* TCL_CREATE_NS_IF_UNKNOWN - Create unknown namespaces.
* TCL_FIND_ONLY_NS - The name sought is a namespace name.
*/
#define TCL_CREATE_NS_IF_UNKNOWN 0x800
#define TCL_FIND_ONLY_NS 0x1000
/*
* The data cached in an ensemble subcommand's Tcl_Obj rep (reference in
* otherValuePtr field). This structure is not shared between Tcl_Objs
* referring to the same subcommand, even where one is a duplicate of another.
*/
typedef struct {
Namespace *nsPtr; /* The namespace backing the ensemble which
* this is a subcommand of. */
int epoch; /* Used to confirm when the data in this
* really structure matches up with the
* ensemble. */
Tcl_Command token; /* Reference to the comamnd for which this
* structure is a cache of the resolution. */
char *fullSubcmdName; /* The full (local) name of the subcommand,
* allocated with ckalloc(). */
Tcl_Obj *realPrefixObj; /* Object containing the prefix words of the
* command that implements this ensemble
* subcommand. */
} EnsembleCmdRep;
/*
* Flag to enable bytecode compilation of an ensemble.
*/
#define ENSEMBLE_COMPILE 0x4
/*
*----------------------------------------------------------------
* Data structures related to variables. These are used primarily in tclVar.c
*----------------------------------------------------------------
*/
/*
* The following structure defines a variable trace, which is used to invoke a
* specific C procedure whenever certain operations are performed on a
* variable.
*/
typedef struct VarTrace {
Tcl_VarTraceProc *traceProc;/* Procedure to call when operations given by
* flags are performed on variable. */
ClientData clientData; /* Argument to pass to proc. */
int flags; /* What events the trace procedure is
* interested in: OR-ed combination of
* TCL_TRACE_READS, TCL_TRACE_WRITES,
* TCL_TRACE_UNSETS and TCL_TRACE_ARRAY. */
struct VarTrace *nextPtr; /* Next in list of traces associated with a
* particular variable. */
} VarTrace;
/*
* The following structure defines a command trace, which is used to invoke a
* specific C procedure whenever certain operations are performed on a
* command.
*/
typedef struct CommandTrace {
Tcl_CommandTraceProc *traceProc;
/* Procedure to call when operations given by
* flags are performed on command. */
ClientData clientData; /* Argument to pass to proc. */
int flags; /* What events the trace procedure is
* interested in: OR-ed combination of
* TCL_TRACE_RENAME, TCL_TRACE_DELETE. */
struct CommandTrace *nextPtr;
/* Next in list of traces associated with a
* particular command. */
int refCount; /* Used to ensure this structure is not
* deleted too early. Keeps track of how many
* pieces of code have a pointer to this
* structure. */
} CommandTrace;
/*
* When a command trace is active (i.e. its associated procedure is executing)
* one of the following structures is linked into a list associated with the
* command's interpreter. The information in the structure is needed in order
* for Tcl to behave reasonably if traces are deleted while traces are active.
*/
typedef struct ActiveCommandTrace {
struct Command *cmdPtr; /* Command that's being traced. */
struct ActiveCommandTrace *nextPtr;
/* Next in list of all active command traces
* for the interpreter, or NULL if no more. */
CommandTrace *nextTracePtr; /* Next trace to check after current trace
* procedure returns; if this trace gets
* deleted, must update pointer to avoid using
* free'd memory. */
int reverseScan; /* Boolean set true when traces are scanning
* in reverse order. */
} ActiveCommandTrace;
/*
* When a variable trace is active (i.e. its associated procedure is
* executing) one of the following structures is linked into a list associated
* with the variable's interpreter. The information in the structure is needed
* in order for Tcl to behave reasonably if traces are deleted while traces
* are active.
*/
typedef struct ActiveVarTrace {
struct Var *varPtr; /* Variable that's being traced. */
struct ActiveVarTrace *nextPtr;
/* Next in list of all active variable traces
* for the interpreter, or NULL if no more. */
VarTrace *nextTracePtr; /* Next trace to check after current trace
* procedure returns; if this trace gets
* deleted, must update pointer to avoid using
* free'd memory. */
} ActiveVarTrace;
/*
* The following structure describes an enumerative search in progress on an
* array variable; this are invoked with options to the "array" command.
*/
typedef struct ArraySearch {
int id; /* Integer id used to distinguish among
* multiple concurrent searches for the same
* array. */
struct Var *varPtr; /* Pointer to array variable that's being
* searched. */
Tcl_HashSearch search; /* Info kept by the hash module about progress
* through the array. */
Tcl_HashEntry *nextEntry; /* Non-null means this is the next element to
* be enumerated (it's leftover from the
* Tcl_FirstHashEntry call or from an "array
* anymore" command). NULL means must call
* Tcl_NextHashEntry to get value to
* return. */
struct ArraySearch *nextPtr;/* Next in list of all active searches for
* this variable, or NULL if this is the last
* one. */
} ArraySearch;
/*
* The structure below defines a variable, which associates a string name with
* a Tcl_Obj value. These structures are kept in procedure call frames (for
* local variables recognized by the compiler) or in the heap (for global
* variables and any variable not known to the compiler). For each Var
* structure in the heap, a hash table entry holds the variable name and a
* pointer to the Var structure.
*/
typedef struct Var {
int flags; /* Miscellaneous bits of information about
* variable. See below for definitions. */
union {
Tcl_Obj *objPtr; /* The variable's object value. Used for
* scalar variables and array elements. */
TclVarHashTable *tablePtr;/* For array variables, this points to
* information about the hash table used to
* implement the associative array. Points to
* ckalloc-ed data. */
struct Var *linkPtr; /* If this is a global variable being referred
* to in a procedure, or a variable created by
* "upvar", this field points to the
* referenced variable's Var struct. */
} value;
} Var;
typedef struct VarInHash {
Var var;
int refCount; /* Counts number of active uses of this
* variable: 1 for the entry in the hash
* table, 1 for each additional variable whose
* linkPtr points here, 1 for each nested
* trace active on variable, and 1 if the
* variable is a namespace variable. This
* record can't be deleted until refCount
* becomes 0. */
Tcl_HashEntry entry; /* The hash table entry that refers to this
* variable. This is used to find the name of
* the variable and to delete it from its
* hashtable if it is no longer needed. It
* also holds the variable's name. */
} VarInHash;
/*
* Flag bits for variables. The first two (VAR_ARRAY and VAR_LINK) are
* mutually exclusive and give the "type" of the variable. If none is set,
* this is a scalar variable.
*
* VAR_ARRAY - 1 means this is an array variable rather than
* a scalar variable or link. The "tablePtr"
* field points to the array's hashtable for its
* elements.
* VAR_LINK - 1 means this Var structure contains a pointer
* to another Var structure that either has the
* real value or is itself another VAR_LINK
* pointer. Variables like this come about
* through "upvar" and "global" commands, or
* through references to variables in enclosing
* namespaces.
*
* Flags that indicate the type and status of storage; none is set for
* compiled local variables (Var structs).
*
* VAR_IN_HASHTABLE - 1 means this variable is in a hashtable and
* the Var structure is malloced. 0 if it is a
* local variable that was assigned a slot in a
* procedure frame by the compiler so the Var
* storage is part of the call frame.
* VAR_DEAD_HASH 1 means that this var's entry in the hashtable
* has already been deleted.
* VAR_ARRAY_ELEMENT - 1 means that this variable is an array
* element, so it is not legal for it to be an
* array itself (the VAR_ARRAY flag had better
* not be set).
* VAR_NAMESPACE_VAR - 1 means that this variable was declared as a
* namespace variable. This flag ensures it
* persists until its namespace is destroyed or
* until the variable is unset; it will persist
* even if it has not been initialized and is
* marked undefined. The variable's refCount is
* incremented to reflect the "reference" from
* its namespace.
*
* Flag values relating to the variable's trace and search status.
*
* VAR_TRACED_READ
* VAR_TRACED_WRITE
* VAR_TRACED_UNSET
* VAR_TRACED_ARRAY
* VAR_TRACE_ACTIVE - 1 means that trace processing is currently
* underway for a read or write access, so new
* read or write accesses should not cause trace
* procedures to be called and the variable can't
* be deleted.
* VAR_SEARCH_ACTIVE
*
* The following additional flags are used with the CompiledLocal type defined
* below:
*
* VAR_ARGUMENT - 1 means that this variable holds a procedure
* argument.
* VAR_TEMPORARY - 1 if the local variable is an anonymous
* temporary variable. Temporaries have a NULL
* name.
* VAR_RESOLVED - 1 if name resolution has been done for this
* variable.
* VAR_IS_ARGS 1 if this variable is the last argument and is
* named "args".
*/
/*
* FLAGS RENUMBERED: everything breaks already, make things simpler.
*
* IMPORTANT: skip the values 0x10, 0x20, 0x40, 0x800 corresponding to
* TCL_TRACE_(READS/WRITES/UNSETS/ARRAY): makes code simpler in tclTrace.c
*
* Keep the flag values for VAR_ARGUMENT and VAR_TEMPORARY so that old values
* in precompiled scripts keep working.
*/
/* Type of value (0 is scalar) */
#define VAR_ARRAY 0x1
#define VAR_LINK 0x2
/* Type of storage (0 is compiled local) */
#define VAR_IN_HASHTABLE 0x4
#define VAR_DEAD_HASH 0x8
#define VAR_ARRAY_ELEMENT 0x1000
#define VAR_NAMESPACE_VAR 0x80 /* KEEP OLD VALUE for Itcl */
#define VAR_ALL_HASH \
(VAR_IN_HASHTABLE|VAR_DEAD_HASH|VAR_NAMESPACE_VAR|VAR_ARRAY_ELEMENT)
/* Trace and search state. */
#define VAR_TRACED_READ 0x10 /* TCL_TRACE_READS */
#define VAR_TRACED_WRITE 0x20 /* TCL_TRACE_WRITES */
#define VAR_TRACED_UNSET 0x40 /* TCL_TRACE_UNSETS */
#define VAR_TRACED_ARRAY 0x800 /* TCL_TRACE_ARRAY */
#define VAR_TRACE_ACTIVE 0x2000
#define VAR_SEARCH_ACTIVE 0x4000
#define VAR_ALL_TRACES \
(VAR_TRACED_READ|VAR_TRACED_WRITE|VAR_TRACED_ARRAY|VAR_TRACED_UNSET)
/* Special handling on initialisation (only CompiledLocal). */
#define VAR_ARGUMENT 0x100 /* KEEP OLD VALUE! See tclProc.c */
#define VAR_TEMPORARY 0x200 /* KEEP OLD VALUE! See tclProc.c */
#define VAR_IS_ARGS 0x400
#define VAR_RESOLVED 0x8000
/*
* Macros to ensure that various flag bits are set properly for variables.
* The ANSI C "prototypes" for these macros are:
*
* MODULE_SCOPE void TclSetVarScalar(Var *varPtr);
* MODULE_SCOPE void TclSetVarArray(Var *varPtr);
* MODULE_SCOPE void TclSetVarLink(Var *varPtr);
* MODULE_SCOPE void TclSetVarArrayElement(Var *varPtr);
* MODULE_SCOPE void TclSetVarUndefined(Var *varPtr);
* MODULE_SCOPE void TclClearVarUndefined(Var *varPtr);
*/
#define TclSetVarScalar(varPtr) \
(varPtr)->flags &= ~(VAR_ARRAY|VAR_LINK)
#define TclSetVarArray(varPtr) \
(varPtr)->flags = ((varPtr)->flags & ~VAR_LINK) | VAR_ARRAY
#define TclSetVarLink(varPtr) \
(varPtr)->flags = ((varPtr)->flags & ~VAR_ARRAY) | VAR_LINK
#define TclSetVarArrayElement(varPtr) \
(varPtr)->flags = ((varPtr)->flags & ~VAR_ARRAY) | VAR_ARRAY_ELEMENT
#define TclSetVarUndefined(varPtr) \
(varPtr)->flags &= ~(VAR_ARRAY|VAR_LINK);\
(varPtr)->value.objPtr = NULL
#define TclClearVarUndefined(varPtr)
#define TclSetVarTraceActive(varPtr) \
(varPtr)->flags |= VAR_TRACE_ACTIVE
#define TclClearVarTraceActive(varPtr) \
(varPtr)->flags &= ~VAR_TRACE_ACTIVE
#define TclSetVarNamespaceVar(varPtr) \
if (!TclIsVarNamespaceVar(varPtr)) {\
(varPtr)->flags |= VAR_NAMESPACE_VAR;\
((VarInHash *)(varPtr))->refCount++;\
}
#define TclClearVarNamespaceVar(varPtr) \
if (TclIsVarNamespaceVar(varPtr)) {\
(varPtr)->flags &= ~VAR_NAMESPACE_VAR;\
((VarInHash *)(varPtr))->refCount--;\
}
/*
* Macros to read various flag bits of variables.
* The ANSI C "prototypes" for these macros are:
*
* MODULE_SCOPE int TclIsVarScalar(Var *varPtr);
* MODULE_SCOPE int TclIsVarLink(Var *varPtr);
* MODULE_SCOPE int TclIsVarArray(Var *varPtr);
* MODULE_SCOPE int TclIsVarUndefined(Var *varPtr);
* MODULE_SCOPE int TclIsVarArrayElement(Var *varPtr);
* MODULE_SCOPE int TclIsVarTemporary(Var *varPtr);
* MODULE_SCOPE int TclIsVarArgument(Var *varPtr);
* MODULE_SCOPE int TclIsVarResolved(Var *varPtr);
*/
#define TclIsVarScalar(varPtr) \
!((varPtr)->flags & (VAR_ARRAY|VAR_LINK))
#define TclIsVarLink(varPtr) \
((varPtr)->flags & VAR_LINK)
#define TclIsVarArray(varPtr) \
((varPtr)->flags & VAR_ARRAY)
#define TclIsVarUndefined(varPtr) \
((varPtr)->value.objPtr == NULL)
#define TclIsVarArrayElement(varPtr) \
((varPtr)->flags & VAR_ARRAY_ELEMENT)
#define TclIsVarNamespaceVar(varPtr) \
((varPtr)->flags & VAR_NAMESPACE_VAR)
#define TclIsVarTemporary(varPtr) \
((varPtr)->flags & VAR_TEMPORARY)
#define TclIsVarArgument(varPtr) \
((varPtr)->flags & VAR_ARGUMENT)
#define TclIsVarResolved(varPtr) \
((varPtr)->flags & VAR_RESOLVED)
#define TclIsVarTraceActive(varPtr) \
((varPtr)->flags & VAR_TRACE_ACTIVE)
#define TclIsVarTraced(varPtr) \
((varPtr)->flags & VAR_ALL_TRACES)
#define TclIsVarInHash(varPtr) \
((varPtr)->flags & VAR_IN_HASHTABLE)
#define TclIsVarDeadHash(varPtr) \
((varPtr)->flags & VAR_DEAD_HASH)
#define TclGetVarNsPtr(varPtr) \
(TclIsVarInHash(varPtr) \
? ((TclVarHashTable *) ((((VarInHash *) (varPtr))->entry.tablePtr)))->nsPtr \
: NULL)
#define VarHashRefCount(varPtr) \
((VarInHash *) (varPtr))->refCount
/*
* Macros for direct variable access by TEBC.
*/
#define TclIsVarDirectReadable(varPtr) \
( !((varPtr)->flags & (VAR_ARRAY|VAR_LINK|VAR_TRACED_READ)) \
&& (varPtr)->value.objPtr)
#define TclIsVarDirectWritable(varPtr) \
!((varPtr)->flags & (VAR_ARRAY|VAR_LINK|VAR_TRACED_WRITE|VAR_DEAD_HASH))
#define TclIsVarDirectModifyable(varPtr) \
( !((varPtr)->flags & (VAR_ARRAY|VAR_LINK|VAR_TRACED_READ|VAR_TRACED_WRITE)) \
&& (varPtr)->value.objPtr)
#define TclIsVarDirectReadable2(varPtr, arrayPtr) \
(TclIsVarDirectReadable(varPtr) &&\
(!(arrayPtr) || !((arrayPtr)->flags & VAR_TRACED_READ)))
#define TclIsVarDirectWritable2(varPtr, arrayPtr) \
(TclIsVarDirectWritable(varPtr) &&\
(!(arrayPtr) || !((arrayPtr)->flags & VAR_TRACED_WRITE)))
#define TclIsVarDirectModifyable2(varPtr, arrayPtr) \
(TclIsVarDirectModifyable(varPtr) &&\
(!(arrayPtr) || !((arrayPtr)->flags & (VAR_TRACED_READ|VAR_TRACED_WRITE))))
/*
*----------------------------------------------------------------
* Data structures related to procedures. These are used primarily in
* tclProc.c, tclCompile.c, and tclExecute.c.
*----------------------------------------------------------------
*/
/*
* Forward declaration to prevent an error when the forward reference to
* Command is encountered in the Proc and ImportRef types declared below.
*/
struct Command;
/*
* The variable-length structure below describes a local variable of a
* procedure that was recognized by the compiler. These variables have a name,
* an element in the array of compiler-assigned local variables in the
* procedure's call frame, and various other items of information. If the
* local variable is a formal argument, it may also have a default value. The
* compiler can't recognize local variables whose names are expressions (these
* names are only known at runtime when the expressions are evaluated) or
* local variables that are created as a result of an "upvar" or "uplevel"
* command. These other local variables are kept separately in a hash table in
* the call frame.
*/
typedef struct CompiledLocal {
struct CompiledLocal *nextPtr;
/* Next compiler-recognized local variable for
* this procedure, or NULL if this is the last
* local. */
int nameLength; /* The number of characters in local
* variable's name. Used to speed up variable
* lookups. */
int frameIndex; /* Index in the array of compiler-assigned
* variables in the procedure call frame. */
int flags; /* Flag bits for the local variable. Same as
* the flags for the Var structure above,
* although only VAR_ARGUMENT, VAR_TEMPORARY,
* and VAR_RESOLVED make sense. */
Tcl_Obj *defValuePtr; /* Pointer to the default value of an
* argument, if any. NULL if not an argument
* or, if an argument, no default value. */
Tcl_ResolvedVarInfo *resolveInfo;
/* Customized variable resolution info
* supplied by the Tcl_ResolveCompiledVarProc
* associated with a namespace. Each variable
* is marked by a unique ClientData tag during
* compilation, and that same tag is used to
* find the variable at runtime. */
char name[4]; /* Name of the local variable starts here. If
* the name is NULL, this will just be '\0'.
* The actual size of this field will be large
* enough to hold the name. MUST BE THE LAST
* FIELD IN THE STRUCTURE! */
} CompiledLocal;
/*
* The structure below defines a command procedure, which consists of a
* collection of Tcl commands plus information about arguments and other local
* variables recognized at compile time.
*/
typedef struct Proc {
struct Interp *iPtr; /* Interpreter for which this command is
* defined. */
int refCount; /* Reference count: 1 if still present in
* command table plus 1 for each call to the
* procedure that is currently active. This
* structure can be freed when refCount
* becomes zero. */
struct Command *cmdPtr; /* Points to the Command structure for this
* procedure. This is used to get the
* namespace in which to execute the
* procedure. */
Tcl_Obj *bodyPtr; /* Points to the ByteCode object for
* procedure's body command. */
int numArgs; /* Number of formal parameters. */
int numCompiledLocals; /* Count of local variables recognized by the
* compiler including arguments and
* temporaries. */
CompiledLocal *firstLocalPtr;
/* Pointer to first of the procedure's
* compiler-allocated local variables, or NULL
* if none. The first numArgs entries in this
* list describe the procedure's formal
* arguments. */
CompiledLocal *lastLocalPtr;/* Pointer to the last allocated local
* variable or NULL if none. This has frame
* index (numCompiledLocals-1). */
} Proc;
/*
* The type of functions called to process errors found during the execution
* of a procedure (or lambda term or ...).
*/
typedef void (*ProcErrorProc)(Tcl_Interp *interp, Tcl_Obj *procNameObj);
/*
* The structure below defines a command trace. This is used to allow Tcl
* clients to find out whenever a command is about to be executed.
*/
typedef struct Trace {
int level; /* Only trace commands at nesting level less
* than or equal to this. */
Tcl_CmdObjTraceProc *proc; /* Procedure to call to trace command. */
ClientData clientData; /* Arbitrary value to pass to proc. */
struct Trace *nextPtr; /* Next in list of traces for this interp. */
int flags; /* Flags governing the trace - see
* Tcl_CreateObjTrace for details. */
Tcl_CmdObjTraceDeleteProc *delProc;
/* Procedure to call when trace is deleted. */
} Trace;
/*
* When an interpreter trace is active (i.e. its associated procedure is
* executing), one of the following structures is linked into a list
* associated with the interpreter. The information in the structure is needed
* in order for Tcl to behave reasonably if traces are deleted while traces
* are active.
*/
typedef struct ActiveInterpTrace {
struct ActiveInterpTrace *nextPtr;
/* Next in list of all active command traces
* for the interpreter, or NULL if no more. */
Trace *nextTracePtr; /* Next trace to check after current trace
* procedure returns; if this trace gets
* deleted, must update pointer to avoid using
* free'd memory. */
int reverseScan; /* Boolean set true when traces are scanning
* in reverse order. */
} ActiveInterpTrace;
/*
* Flag values designating types of execution traces. See tclTrace.c for
* related flag values.
*
* TCL_TRACE_ENTER_EXEC - triggers enter/enterstep traces.
* - passed to Tcl_CreateObjTrace to set up
* "enterstep" traces.
* TCL_TRACE_LEAVE_EXEC - triggers leave/leavestep traces.
* - passed to Tcl_CreateObjTrace to set up
* "leavestep" traces.
*/
#define TCL_TRACE_ENTER_EXEC 1
#define TCL_TRACE_LEAVE_EXEC 2
/*
* The structure below defines an entry in the assocData hash table which is
* associated with an interpreter. The entry contains a pointer to a function
* to call when the interpreter is deleted, and a pointer to a user-defined
* piece of data.
*/
typedef struct AssocData {
Tcl_InterpDeleteProc *proc; /* Proc to call when deleting. */
ClientData clientData; /* Value to pass to proc. */
} AssocData;
/*
* The structure below defines a call frame. A call frame defines a naming
* context for a procedure call: its local naming scope (for local variables)
* and its global naming scope (a namespace, perhaps the global :: namespace).
* A call frame can also define the naming context for a namespace eval or
* namespace inscope command: the namespace in which the command's code should
* execute. The Tcl_CallFrame structures exist only while procedures or
* namespace eval/inscope's are being executed, and provide a kind of Tcl call
* stack.
*
* WARNING!! The structure definition must be kept consistent with the
* Tcl_CallFrame structure in tcl.h. If you change one, change the other.
*/
/*
* Will be grown to contain: pointers to the varnames (allocated at the end),
* plus the init values for each variable (suitable to be memcopied on init)
*/
typedef struct LocalCache {
int refCount;
int numVars;
Tcl_Obj *varName0;
} LocalCache;
#define localName(framePtr, i) \
((&((framePtr)->localCachePtr->varName0))[(i)])
MODULE_SCOPE void TclFreeLocalCache(Tcl_Interp *interp,
LocalCache *localCachePtr);
typedef struct CallFrame {
Namespace *nsPtr; /* Points to the namespace used to resolve
* commands and global variables. */
int isProcCallFrame; /* If 0, the frame was pushed to execute a
* namespace command and var references are
* treated as references to namespace vars;
* varTablePtr and compiledLocals are ignored.
* If FRAME_IS_PROC is set, the frame was
* pushed to execute a Tcl procedure and may
* have local vars. */
int objc; /* This and objv below describe the arguments
* for this procedure call. */
Tcl_Obj *const *objv; /* Array of argument objects. */
struct CallFrame *callerPtr;
/* Value of interp->framePtr when this
* procedure was invoked (i.e. next higher in
* stack of all active procedures). */
struct CallFrame *callerVarPtr;
/* Value of interp->varFramePtr when this
* procedure was invoked (i.e. determines
* variable scoping within caller). Same as
* callerPtr unless an "uplevel" command or
* something equivalent was active in the
* caller). */
int level; /* Level of this procedure, for "uplevel"
* purposes (i.e. corresponds to nesting of
* callerVarPtr's, not callerPtr's). 1 for
* outermost procedure, 0 for top-level. */
Proc *procPtr; /* Points to the structure defining the called
* procedure. Used to get information such as
* the number of compiled local variables
* (local variables assigned entries ["slots"]
* in the compiledLocals array below). */
TclVarHashTable *varTablePtr;
/* Hash table containing local variables not
* recognized by the compiler, or created at
* execution time through, e.g., upvar.
* Initially NULL and created if needed. */
int numCompiledLocals; /* Count of local variables recognized by the
* compiler including arguments. */
Var *compiledLocals; /* Points to the array of local variables
* recognized by the compiler. The compiler
* emits code that refers to these variables
* using an index into this array. */
ClientData clientData; /* Pointer to some context that is used by
* object systems. The meaning of the contents
* of this field is defined by the code that
* sets it, and it should only ever be set by
* the code that is pushing the frame. In that
* case, the code that sets it should also
* have some means of discovering what the
* meaning of the value is, which we do not
* specify. */
LocalCache *localCachePtr;
} CallFrame;
#define FRAME_IS_PROC 0x1
#define FRAME_IS_LAMBDA 0x2
/*
* TIP #280
* The structure below defines a command frame. A command frame provides
* location information for all commands executing a tcl script (source, eval,
* uplevel, procedure bodies, ...). The runtime structure essentially contains
* the stack trace as it would be if the currently executing command were to
* throw an error.
*
* For commands where it makes sense it refers to the associated CallFrame as
* well.
*
* The structures are chained in a single list, with the top of the stack
* anchored in the Interp structure.
*
* Instances can be allocated on the C stack, or the heap, the former making
* cleanup a bit simpler.
*/
typedef struct CmdFrame {
/*
* General data. Always available.
*/
int type; /* Values see below. */
int level; /* Number of frames in stack, prevent O(n)
* scan of list. */
int *line; /* Lines the words of the command start on. */
int nline;
CallFrame *framePtr; /* Procedure activation record, may be
* NULL. */
struct CmdFrame *nextPtr; /* Link to calling frame. */
/*
* Data needed for Eval vs TEBC
*
* EXECUTION CONTEXTS and usage of CmdFrame
*
* Field TEBC EvalEx EvalObjEx
* ======= ==== ====== =========
* level yes yes yes
* type BC/PREBC SRC/EVAL EVAL_LIST
* line0 yes yes yes
* framePtr yes yes yes
* ======= ==== ====== =========
*
* ======= ==== ====== ========= union data
* line1 - yes -
* line3 - yes -
* path - yes -
* ------- ---- ------ ---------
* codePtr yes - -
* pc yes - -
* ======= ==== ====== =========
*
* ======= ==== ====== ========= | union cmd
* listPtr - - yes |
* ------- ---- ------ --------- |
* cmd yes yes - |
* cmdlen yes yes - |
* ------- ---- ------ --------- |
*/
union {
struct {
Tcl_Obj *path; /* Path of the sourced file the command is
* in. */
} eval;
struct {
const void *codePtr;/* Byte code currently executed... */
const char *pc; /* ... and instruction pointer. */
} tebc;
} data;
union {
struct {
const char *cmd; /* The executed command, if possible... */
int len; /* ... and its length. */
} str;
Tcl_Obj *listPtr; /* Tcl_EvalObjEx, cmd list. */
} cmd;
} CmdFrame;
typedef struct CFWord {
CmdFrame *framePtr; /* CmdFrame to access. */
int word; /* Index of the word in the command. */
int refCount; /* Number of times the word is on the
* stack. */
} CFWord;
typedef struct CFWordBC {
CmdFrame *framePtr; /* CmdFrame to access. */
int pc; /* Instruction pointer of a command in
* ExtCmdLoc.loc[.] */
int word; /* Index of word in
* ExtCmdLoc.loc[cmd]->line[.] */
struct CFWordBC *prevPtr; /* Previous entry in stack for same Tcl_Obj. */
} CFWordBC;
/*
* Structure to record the locations of invisible continuation lines in
* literal scripts, as character offset from the beginning of the script. Both
* compiler and direct evaluator use this information to adjust their line
* counters when tracking through the script, because when it is invoked the
* continuation line marker as a whole has been removed already, meaning that
* the \n which was part of it is gone as well, breaking regular line
* tracking.
*
* These structures are allocated and filled by both the function
* TclSubstTokens() in the file "tclParse.c" and its caller TclEvalEx() in the
* file "tclBasic.c", and stored in the thread-global hashtable "lineCLPtr" in
* file "tclObj.c". They are used by the functions TclSetByteCodeFromAny() and
* TclCompileScript(), both found in the file "tclCompile.c". Their memory is
* released by the function TclFreeObj(), in the file "tclObj.c", and also by
* the function TclThreadFinalizeObjects(), in the same file.
*/
#define CLL_END (-1)
typedef struct ContLineLoc {
int num; /* Number of entries in loc, not counting the
* final -1 marker entry. */
int loc[1]; /* Table of locations, as character offsets.
* The table is allocated as part of the
* structure, extending behind the nominal end
* of the structure. An entry containing the
* value -1 is put after the last location, as
* end-marker/sentinel. */
} ContLineLoc;
/*
* The following macros define the allowed values for the type field of the
* CmdFrame structure above. Some of the values occur only in the extended
* location data referenced via the 'baseLocPtr'.
*
* TCL_LOCATION_EVAL : Frame is for a script evaluated by EvalEx.
* TCL_LOCATION_EVAL_LIST : Frame is for a script evaluated by the list
* optimization path of EvalObjEx.
* TCL_LOCATION_BC : Frame is for bytecode.
* TCL_LOCATION_PREBC : Frame is for precompiled bytecode.
* TCL_LOCATION_SOURCE : Frame is for a script evaluated by EvalEx, from a
* sourced file.
* TCL_LOCATION_PROC : Frame is for bytecode of a procedure.
*
* A TCL_LOCATION_BC type in a frame can be overridden by _SOURCE and _PROC
* types, per the context of the byte code in execution.
*/
#define TCL_LOCATION_EVAL (0) /* Location in a dynamic eval script. */
#define TCL_LOCATION_EVAL_LIST (1) /* Location in a dynamic eval script,
* list-path. */
#define TCL_LOCATION_BC (2) /* Location in byte code. */
#define TCL_LOCATION_PREBC (3) /* Location in precompiled byte code, no
* location. */
#define TCL_LOCATION_SOURCE (4) /* Location in a file. */
#define TCL_LOCATION_PROC (5) /* Location in a dynamic proc. */
#define TCL_LOCATION_LAST (6) /* Number of values in the enum. */
/*
* Structure passed to describe procedure-like "procedures" that are not
* procedures (e.g. a lambda) so that their details can be reported correctly
* by [info frame]. Contains a sub-structure for each extra field.
*/
typedef Tcl_Obj *(*GetFrameInfoValueProc)(ClientData clientData);
typedef struct {
const char *name; /* Name of this field. */
GetFrameInfoValueProc proc; /* Function to generate a Tcl_Obj* from the
* clientData, or just use the clientData
* directly (after casting) if NULL. */
ClientData clientData; /* Context for above function, or Tcl_Obj* if
* proc field is NULL. */
} ExtraFrameInfoField;
typedef struct {
int length; /* Length of array. */
ExtraFrameInfoField fields[2];
/* Really as long as necessary, but this is
* long enough for nearly anything. */
} ExtraFrameInfo;
/*
*----------------------------------------------------------------
* Data structures and procedures related to TclHandles, which are a very
* lightweight method of preserving enough information to determine if an
* arbitrary malloc'd block has been deleted.
*----------------------------------------------------------------
*/
typedef void **TclHandle;
/*
*----------------------------------------------------------------
* Experimental flag value passed to Tcl_GetRegExpFromObj. Intended for use
* only by Expect. It will probably go away in a later release.
*----------------------------------------------------------------
*/
#define TCL_REG_BOSONLY 002000 /* Prepend \A to pattern so it only matches at
* the beginning of the string. */
/*
* These are a thin layer over TclpThreadKeyDataGet and TclpThreadKeyDataSet
* when threads are used, or an emulation if there are no threads. These are
* really internal and Tcl clients should use Tcl_GetThreadData.
*/
MODULE_SCOPE void * TclThreadDataKeyGet(Tcl_ThreadDataKey *keyPtr);
MODULE_SCOPE void TclThreadDataKeySet(Tcl_ThreadDataKey *keyPtr,
void *data);
/*
* This is a convenience macro used to initialize a thread local storage ptr.
*/
#define TCL_TSD_INIT(keyPtr) \
(ThreadSpecificData *)Tcl_GetThreadData((keyPtr), sizeof(ThreadSpecificData))
/*
*----------------------------------------------------------------
* Data structures related to bytecode compilation and execution. These are
* used primarily in tclCompile.c, tclExecute.c, and tclBasic.c.
*----------------------------------------------------------------
*/
/*
* Forward declaration to prevent errors when the forward references to
* Tcl_Parse and CompileEnv are encountered in the procedure type CompileProc
* declared below.
*/
struct CompileEnv;
/*
* The type of procedures called by the Tcl bytecode compiler to compile
* commands. Pointers to these procedures are kept in the Command structure
* describing each command. The integer value returned by a CompileProc must
* be one of the following:
*
* TCL_OK Compilation completed normally.
* TCL_ERROR Compilation could not be completed. This can be just a
* judgment by the CompileProc that the command is too
* complex to compile effectively, or it can indicate
* that in the current state of the interp, the command
* would raise an error. The bytecode compiler will not
* do any error reporting at compiler time. Error
* reporting is deferred until the actual runtime,
* because by then changes in the interp state may allow
* the command to be successfully evaluated.
* TCL_OUT_LINE_COMPILE A source-compatible alias for TCL_ERROR, kept for the
* sake of old code only.
*/
#define TCL_OUT_LINE_COMPILE TCL_ERROR
typedef int (CompileProc)(Tcl_Interp *interp, Tcl_Parse *parsePtr,
struct Command *cmdPtr, struct CompileEnv *compEnvPtr);
/*
* The type of procedure called from the compilation hook point in
* SetByteCodeFromAny.
*/
typedef int (CompileHookProc)(Tcl_Interp *interp,
struct CompileEnv *compEnvPtr, ClientData clientData);
/*
* The data structure for a (linked list of) execution stacks.
*/
typedef struct ExecStack {
struct ExecStack *prevPtr;
struct ExecStack *nextPtr;
Tcl_Obj **markerPtr;
Tcl_Obj **endPtr;
Tcl_Obj **tosPtr;
Tcl_Obj *stackWords[1];
} ExecStack;
/*
* The data structure defining the execution environment for ByteCode's.
* There is one ExecEnv structure per Tcl interpreter. It holds the evaluation
* stack that holds command operands and results. The stack grows towards
* increasing addresses. The member stackPtr points to the stackItems of the
* currently active execution stack.
*/
typedef struct ExecEnv {
ExecStack *execStackPtr; /* Points to the first item in the evaluation
* stack on the heap. */
Tcl_Obj *constants[2]; /* Pointers to constant "0" and "1" objs. */
} ExecEnv;
/*
* The definitions for the LiteralTable and LiteralEntry structures. Each
* interpreter contains a LiteralTable. It is used to reduce the storage
* needed for all the Tcl objects that hold the literals of scripts compiled
* by the interpreter. A literal's object is shared by all the ByteCodes that
* refer to the literal. Each distinct literal has one LiteralEntry entry in
* the LiteralTable. A literal table is a specialized hash table that is
* indexed by the literal's string representation, which may contain null
* characters.
*
* Note that we reduce the space needed for literals by sharing literal
* objects both within a ByteCode (each ByteCode contains a local
* LiteralTable) and across all an interpreter's ByteCodes (with the
* interpreter's global LiteralTable).
*/
typedef struct LiteralEntry {
struct LiteralEntry *nextPtr;
/* Points to next entry in this hash bucket or
* NULL if end of chain. */
Tcl_Obj *objPtr; /* Points to Tcl object that holds the
* literal's bytes and length. */
int refCount; /* If in an interpreter's global literal
* table, the number of ByteCode structures
* that share the literal object; the literal
* entry can be freed when refCount drops to
* 0. If in a local literal table, -1. */
Namespace *nsPtr; /* Namespace in which this literal is used. We
* try to avoid sharing literal non-FQ command
* names among different namespaces to reduce
* shimmering. */
} LiteralEntry;
typedef struct LiteralTable {
LiteralEntry **buckets; /* Pointer to bucket array. Each element
* points to first entry in bucket's hash
* chain, or NULL. */
LiteralEntry *staticBuckets[TCL_SMALL_HASH_TABLE];
/* Bucket array used for small tables to avoid
* mallocs and frees. */
int numBuckets; /* Total number of buckets allocated at
* **buckets. */
int numEntries; /* Total number of entries present in
* table. */
int rebuildSize; /* Enlarge table when numEntries gets to be
* this large. */
int mask; /* Mask value used in hashing function. */
} LiteralTable;
/*
* The following structure defines for each Tcl interpreter various
* statistics-related information about the bytecode compiler and
* interpreter's operation in that interpreter.
*/
#ifdef TCL_COMPILE_STATS
typedef struct ByteCodeStats {
long numExecutions; /* Number of ByteCodes executed. */
long numCompilations; /* Number of ByteCodes created. */
long numByteCodesFreed; /* Number of ByteCodes destroyed. */
long instructionCount[256]; /* Number of times each instruction was
* executed. */
double totalSrcBytes; /* Total source bytes ever compiled. */
double totalByteCodeBytes; /* Total bytes for all ByteCodes. */
double currentSrcBytes; /* Src bytes for all current ByteCodes. */
double currentByteCodeBytes;/* Code bytes in all current ByteCodes. */
long srcCount[32]; /* Source size distribution: # of srcs of
* size [2**(n-1)..2**n), n in [0..32). */
long byteCodeCount[32]; /* ByteCode size distribution. */
long lifetimeCount[32]; /* ByteCode lifetime distribution (ms). */
double currentInstBytes; /* Instruction bytes-current ByteCodes. */
double currentLitBytes; /* Current literal bytes. */
double currentExceptBytes; /* Current exception table bytes. */
double currentAuxBytes; /* Current auxiliary information bytes. */
double currentCmdMapBytes; /* Current src<->code map bytes. */
long numLiteralsCreated; /* Total literal objects ever compiled. */
double totalLitStringBytes; /* Total string bytes in all literals. */
double currentLitStringBytes;
/* String bytes in current literals. */
long literalCount[32]; /* Distribution of literal string sizes. */
} ByteCodeStats;
#endif /* TCL_COMPILE_STATS */
/*
* Structure used in implementation of those core ensembles which are
* partially compiled. Used as an array of these, with a terminating field
* whose 'name' is NULL.
*/
typedef struct {
const char *name; /* The name of the subcommand. */
Tcl_ObjCmdProc *proc; /* The implementation of the subcommand. */
CompileProc *compileProc; /* The compiler for the subcommand. */
} EnsembleImplMap;
/*
*----------------------------------------------------------------
* Data structures related to commands.
*----------------------------------------------------------------
*/
/*
* An imported command is created in an namespace when it imports a "real"
* command from another namespace. An imported command has a Command structure
* that points (via its ClientData value) to the "real" Command structure in
* the source namespace's command table. The real command records all the
* imported commands that refer to it in a list of ImportRef structures so
* that they can be deleted when the real command is deleted.
*/
typedef struct ImportRef {
struct Command *importedCmdPtr;
/* Points to the imported command created in
* an importing namespace; this command
* redirects its invocations to the "real"
* command. */
struct ImportRef *nextPtr; /* Next element on the linked list of imported
* commands that refer to the "real" command.
* The real command deletes these imported
* commands on this list when it is
* deleted. */
} ImportRef;
/*
* Data structure used as the ClientData of imported commands: commands
* created in an namespace when it imports a "real" command from another
* namespace.
*/
typedef struct ImportedCmdData {
struct Command *realCmdPtr; /* "Real" command that this imported command
* refers to. */
struct Command *selfPtr; /* Pointer to this imported command. Needed
* only when deleting it in order to remove it
* from the real command's linked list of
* imported commands that refer to it. */
} ImportedCmdData;
/*
* A Command structure exists for each command in a namespace. The Tcl_Command
* opaque type actually refers to these structures.
*/
typedef struct Command {
Tcl_HashEntry *hPtr; /* Pointer to the hash table entry that refers
* to this command. The hash table is either a
* namespace's command table or an
* interpreter's hidden command table. This
* pointer is used to get a command's name
* from its Tcl_Command handle. NULL means
* that the hash table entry has been removed
* already (this can happen if deleteProc
* causes the command to be deleted or
* recreated). */
Namespace *nsPtr; /* Points to the namespace containing this
* command. */
int refCount; /* 1 if in command hashtable plus 1 for each
* reference from a CmdName Tcl object
* representing a command's name in a ByteCode
* instruction sequence. This structure can be
* freed when refCount becomes zero. */
int cmdEpoch; /* Incremented to invalidate any references
* that point to this command when it is
* renamed, deleted, hidden, or exposed. */
CompileProc *compileProc; /* Procedure called to compile command. NULL
* if no compile proc exists for command. */
Tcl_ObjCmdProc *objProc; /* Object-based command procedure. */
ClientData objClientData; /* Arbitrary value passed to object proc. */
Tcl_CmdProc *proc; /* String-based command procedure. */
ClientData clientData; /* Arbitrary value passed to string proc. */
Tcl_CmdDeleteProc *deleteProc;
/* Procedure invoked when deleting command to,
* e.g., free all client data. */
ClientData deleteData; /* Arbitrary value passed to deleteProc. */
int flags; /* Miscellaneous bits of information about
* command. See below for definitions. */
ImportRef *importRefPtr; /* List of each imported Command created in
* another namespace when this command is
* imported. These imported commands redirect
* invocations back to this command. The list
* is used to remove all those imported
* commands when deleting this "real"
* command. */
CommandTrace *tracePtr; /* First in list of all traces set for this
* command. */
} Command;
/*
* Flag bits for commands.
*
* CMD_IS_DELETED - Means that the command is in the process of
* being deleted (its deleteProc is currently
* executing). Other attempts to delete the
* command should be ignored.
* CMD_TRACE_ACTIVE - 1 means that trace processing is currently
* underway for a rename/delete change. See the
* two flags below for which is currently being
* processed.
* CMD_HAS_EXEC_TRACES - 1 means that this command has at least one
* execution trace (as opposed to simple
* delete/rename traces) in its tracePtr list.
* TCL_TRACE_RENAME - A rename trace is in progress. Further
* recursive renames will not be traced.
* TCL_TRACE_DELETE - A delete trace is in progress. Further
* recursive deletes will not be traced.
* (these last two flags are defined in tcl.h)
*/
#define CMD_IS_DELETED 0x1
#define CMD_TRACE_ACTIVE 0x2
#define CMD_HAS_EXEC_TRACES 0x4
/*
*----------------------------------------------------------------
* Data structures related to name resolution procedures.
*----------------------------------------------------------------
*/
/*
* The interpreter keeps a linked list of name resolution schemes. The scheme
* for a namespace is consulted first, followed by the list of schemes in an
* interpreter, followed by the default name resolution in Tcl. Schemes are
* added/removed from the interpreter's list by calling Tcl_AddInterpResolver
* and Tcl_RemoveInterpResolver.
*/
typedef struct ResolverScheme {
char *name; /* Name identifying this scheme. */
Tcl_ResolveCmdProc *cmdResProc;
/* Procedure handling command name
* resolution. */
Tcl_ResolveVarProc *varResProc;
/* Procedure handling variable name resolution
* for variables that can only be handled at
* runtime. */
Tcl_ResolveCompiledVarProc *compiledVarResProc;
/* Procedure handling variable name resolution
* at compile time. */
struct ResolverScheme *nextPtr;
/* Pointer to next record in linked list. */
} ResolverScheme;
/*
* Forward declaration of the TIP#143 limit handler structure.
*/
typedef struct LimitHandler LimitHandler;
/*
* TIP #268.
* Values for the selection mode, i.e the package require preferences.
*/
enum PkgPreferOptions {
PKG_PREFER_LATEST, PKG_PREFER_STABLE
};
/*
*----------------------------------------------------------------
* This structure defines an interpreter, which is a collection of commands
* plus other state information related to interpreting commands, such as
* variable storage. Primary responsibility for this data structure is in
* tclBasic.c, but almost every Tcl source file uses something in here.
*----------------------------------------------------------------
*/
typedef struct Interp {
/*
* Note: the first three fields must match exactly the fields in a
* Tcl_Interp struct (see tcl.h). If you change one, be sure to change the
* other.
*
* The interpreter's result is held in both the string and the
* objResultPtr fields. These fields hold, respectively, the result's
* string or object value. The interpreter's result is always in the
* result field if that is non-empty, otherwise it is in objResultPtr.
* The two fields are kept consistent unless some C code sets
* interp->result directly. Programs should not access result and
* objResultPtr directly; instead, they should always get and set the
* result using procedures such as Tcl_SetObjResult, Tcl_GetObjResult, and
* Tcl_GetStringResult. See the SetResult man page for details.
*/
char *result; /* If the last command returned a string
* result, this points to it. Should not be
* accessed directly; see comment above. */
Tcl_FreeProc *freeProc; /* Zero means a string result is statically
* allocated. TCL_DYNAMIC means string result
* was allocated with ckalloc and should be
* freed with ckfree. Other values give
* address of procedure to invoke to free the
* string result. Tcl_Eval must free it before
* executing next command. */
int errorLine; /* When TCL_ERROR is returned, this gives the
* line number in the command where the error
* occurred (1 means first line). */
struct TclStubs *stubTable;
/* Pointer to the exported Tcl stub table. On
* previous versions of Tcl this is a pointer
* to the objResultPtr or a pointer to a
* buckets array in a hash table. We therefore
* have to do some careful checking before we
* can use this. */
TclHandle handle; /* Handle used to keep track of when this
* interp is deleted. */
Namespace *globalNsPtr; /* The interpreter's global namespace. */
Tcl_HashTable *hiddenCmdTablePtr;
/* Hash table used by tclBasic.c to keep track
* of hidden commands on a per-interp
* basis. */
ClientData interpInfo; /* Information used by tclInterp.c to keep
* track of master/slave interps on a
* per-interp basis. */
Tcl_HashTable unused2; /* No longer used (was mathFuncTable) */
/*
* Information related to procedures and variables. See tclProc.c and
* tclVar.c for usage.
*/
int numLevels; /* Keeps track of how many nested calls to
* Tcl_Eval are in progress for this
* interpreter. It's used to delay deletion of
* the table until all Tcl_Eval invocations
* are completed. */
int maxNestingDepth; /* If numLevels exceeds this value then Tcl
* assumes that infinite recursion has
* occurred and it generates an error. */
CallFrame *framePtr; /* Points to top-most in stack of all nested
* procedure invocations. */
CallFrame *varFramePtr; /* Points to the call frame whose variables
* are currently in use (same as framePtr
* unless an "uplevel" command is
* executing). */
ActiveVarTrace *activeVarTracePtr;
/* First in list of active traces for interp,
* or NULL if no active traces. */
int returnCode; /* [return -code] parameter. */
CallFrame *rootFramePtr; /* Global frame pointer for this
* interpreter. */
Namespace *lookupNsPtr; /* Namespace to use ONLY on the next
* TCL_EVAL_INVOKE call to Tcl_EvalObjv. */
/*
* Information used by Tcl_AppendResult to keep track of partial results.
* See Tcl_AppendResult code for details.
*/
char *appendResult; /* Storage space for results generated by
* Tcl_AppendResult. Ckalloc-ed. NULL means
* not yet allocated. */
int appendAvl; /* Total amount of space available at
* partialResult. */
int appendUsed; /* Number of non-null bytes currently stored
* at partialResult. */
/*
* Information about packages. Used only in tclPkg.c.
*/
Tcl_HashTable packageTable; /* Describes all of the packages loaded in or
* available to this interpreter. Keys are
* package names, values are (Package *)
* pointers. */
char *packageUnknown; /* Command to invoke during "package require"
* commands for packages that aren't described
* in packageTable. Ckalloc'ed, may be
* NULL. */
/*
* Miscellaneous information:
*/
int cmdCount; /* Total number of times a command procedure
* has been called for this interpreter. */
int evalFlags; /* Flags to control next call to Tcl_Eval.
* Normally zero, but may be set before
* calling Tcl_Eval. See below for valid
* values. */
int unused1; /* No longer used (was termOffset) */
LiteralTable literalTable; /* Contains LiteralEntry's describing all Tcl
* objects holding literals of scripts
* compiled by the interpreter. Indexed by the
* string representations of literals. Used to
* avoid creating duplicate objects. */
int compileEpoch; /* Holds the current "compilation epoch" for
* this interpreter. This is incremented to
* invalidate existing ByteCodes when, e.g., a
* command with a compile procedure is
* redefined. */
Proc *compiledProcPtr; /* If a procedure is being compiled, a pointer
* to its Proc structure; otherwise, this is
* NULL. Set by ObjInterpProc in tclProc.c and
* used by tclCompile.c to process local
* variables appropriately. */
ResolverScheme *resolverPtr;
/* Linked list of name resolution schemes
* added to this interpreter. Schemes are
* added and removed by calling
* Tcl_AddInterpResolvers and
* Tcl_RemoveInterpResolver respectively. */
Tcl_Obj *scriptFile; /* NULL means there is no nested source
* command active; otherwise this points to
* pathPtr of the file being sourced. */
int flags; /* Various flag bits. See below. */
long randSeed; /* Seed used for rand() function. */
Trace *tracePtr; /* List of traces for this interpreter. */
Tcl_HashTable *assocData; /* Hash table for associating data with this
* interpreter. Cleaned up when this
* interpreter is deleted. */
struct ExecEnv *execEnvPtr; /* Execution environment for Tcl bytecode
* execution. Contains a pointer to the Tcl
* evaluation stack. */
Tcl_Obj *emptyObjPtr; /* Points to an object holding an empty
* string. Returned by Tcl_ObjSetVar2 when
* variable traces change a variable in a
* gross way. */
char resultSpace[TCL_RESULT_SIZE+1];
/* Static space holding small results. */
Tcl_Obj *objResultPtr; /* If the last command returned an object
* result, this points to it. Should not be
* accessed directly; see comment above. */
Tcl_ThreadId threadId; /* ID of thread that owns the interpreter. */
ActiveCommandTrace *activeCmdTracePtr;
/* First in list of active command traces for
* interp, or NULL if no active traces. */
ActiveInterpTrace *activeInterpTracePtr;
/* First in list of active traces for interp,
* or NULL if no active traces. */
int tracesForbiddingInline; /* Count of traces (in the list headed by
* tracePtr) that forbid inline bytecode
* compilation. */
/*
* Fields used to manage extensible return options (TIP 90).
*/
Tcl_Obj *returnOpts; /* A dictionary holding the options to the
* last [return] command. */
Tcl_Obj *errorInfo; /* errorInfo value (now as a Tcl_Obj). */
Tcl_Obj *eiVar; /* cached ref to ::errorInfo variable. */
Tcl_Obj *errorCode; /* errorCode value (now as a Tcl_Obj). */
Tcl_Obj *ecVar; /* cached ref to ::errorInfo variable. */
int returnLevel; /* [return -level] parameter. */
/*
* Resource limiting framework support (TIP#143).
*/
struct {
int active; /* Flag values defining which limits have been
* set. */
int granularityTicker; /* Counter used to determine how often to
* check the limits. */
int exceeded; /* Which limits have been exceeded, described
* as flag values the same as the 'active'
* field. */
int cmdCount; /* Limit for how many commands to execute in
* the interpreter. */
LimitHandler *cmdHandlers;
/* Handlers to execute when the limit is
* reached. */
int cmdGranularity; /* Mod factor used to determine how often to
* evaluate the limit check. */
Tcl_Time time; /* Time limit for execution within the
* interpreter. */
LimitHandler *timeHandlers;
/* Handlers to execute when the limit is
* reached. */
int timeGranularity; /* Mod factor used to determine how often to
* evaluate the limit check. */
Tcl_TimerToken timeEvent;
/* Handle for a timer callback that will occur
* when the time-limit is exceeded. */
Tcl_HashTable callbacks;/* Mapping from (interp,type) pair to data
* used to install a limit handler callback to
* run in _this_ interp when the limit is
* exceeded. */
} limit;
/*
* Information for improved default error generation from ensembles
* (TIP#112).
*/
struct {
Tcl_Obj *const *sourceObjs;
/* What arguments were actually input into the
* *root* ensemble command? (Nested ensembles
* don't rewrite this.) NULL if we're not
* processing an ensemble. */
int numRemovedObjs; /* How many arguments have been stripped off
* because of ensemble processing. */
int numInsertedObjs; /* How many of the current arguments were
* inserted by an ensemble. */
} ensembleRewrite;
/*
* TIP #219: Global info for the I/O system.
*/
Tcl_Obj *chanMsg; /* Error message set by channel drivers, for
* the propagation of arbitrary Tcl errors.
* This information, if present (chanMsg not
* NULL), takes precedence over a POSIX error
* code returned by a channel operation. */
/*
* Source code origin information (TIP #280).
*/
CmdFrame *cmdFramePtr; /* Points to the command frame containing the
* location information for the current
* command. */
const CmdFrame *invokeCmdFramePtr;
/* Points to the command frame which is the
* invoking context of the bytecode compiler.
* NULL when the byte code compiler is not
* active. */
int invokeWord; /* Index of the word in the command which
* is getting compiled. */
Tcl_HashTable *linePBodyPtr;/* This table remembers for each statically
* defined procedure the location information
* for its body. It is keyed by the address of
* the Proc structure for a procedure. The
* values are "struct CmdFrame*". */
Tcl_HashTable *lineBCPtr; /* This table remembers for each ByteCode
* object the location information for its
* body. It is keyed by the address of the
* Proc structure for a procedure. The values
* are "struct ExtCmdLoc*". (See
* tclCompile.h) */
Tcl_HashTable *lineLABCPtr;
Tcl_HashTable *lineLAPtr; /* This table remembers for each argument of a
* command on the execution stack the index of
* the argument in the command, and the
* location data of the command. It is keyed
* by the address of the Tcl_Obj containing
* the argument. The values are "struct
* CFWord*" (See tclBasic.c). This allows
* commands like uplevel, eval, etc. to find
* location information for their arguments,
* if they are a proper literal argument to an
* invoking command. Alt view: An index to the
* CmdFrame stack keyed by command argument
* holders. */
ContLineLoc *scriptCLLocPtr;/* This table points to the location data for
* invisible continuation lines in the script,
* if any. This pointer is set by the function
* TclEvalObjEx() in file "tclBasic.c", and
* used by function ...() in the same file.
* It does for the eval/direct path of script
* execution what CompileEnv.clLoc does for
* the bytecode compiler.
*/
/*
* TIP #268. The currently active selection mode, i.e. the package require
* preferences.
*/
int packagePrefer; /* Current package selection mode. */
/*
* Hashtables for variable traces and searches.
*/
Tcl_HashTable varTraces; /* Hashtable holding the start of a variable's
* active trace list; varPtr is the key. */
Tcl_HashTable varSearches; /* Hashtable holding the start of a variable's
* active searches list; varPtr is the key. */
/*
* The thread-specific data ekeko: cache pointers or values that
* (a) do not change during the thread's lifetime
* (b) require access to TSD to determine at runtime
* (c) are accessed very often (e.g., at each command call)
*
* Note that these are the same for all interps in the same thread. They
* just have to be initialised for the thread's master interp, slaves
* inherit the value.
*
* They are used by the macros defined below.
*/
void *allocCache;
void *pendingObjDataPtr; /* Pointer to the Cache and PendingObjData
* structs for this interp's thread; see
* tclObj.c and tclThreadAlloc.c */
int *asyncReadyPtr; /* Pointer to the asyncReady indicator for
* this interp's thread; see tclAsync.c */
int *stackBound; /* Pointer to the limit stack address
* allowable for invoking a new command
* without "risking" a C-stack overflow; see
* TclpCheckStackSpace in the platform's
* directory. */
#ifdef TCL_COMPILE_STATS
/*
* Statistical information about the bytecode compiler and interpreter's
* operation.
*/
ByteCodeStats stats; /* Holds compilation and execution statistics
* for this interpreter. */
#endif /* TCL_COMPILE_STATS */
} Interp;
/*
* Macros that use the TSD-ekeko.
*/
#define TclAsyncReady(iPtr) \
*((iPtr)->asyncReadyPtr)
/*
* General list of interpreters. Doubly linked for easier removal of items
* deep in the list.
*/
typedef struct InterpList {
Interp *interpPtr;
struct InterpList *prevPtr;
struct InterpList *nextPtr;
} InterpList;
/*
* Macros for splicing into and out of doubly linked lists. They assume
* existence of struct items 'prevPtr' and 'nextPtr'.
*
* a = element to add or remove.
* b = list head.
*
* TclSpliceIn adds to the head of the list.
*/
#define TclSpliceIn(a,b) \
(a)->nextPtr = (b); \
if ((b) != NULL) { \
(b)->prevPtr = (a); \
} \
(a)->prevPtr = NULL, (b) = (a);
#define TclSpliceOut(a,b) \
if ((a)->prevPtr != NULL) { \
(a)->prevPtr->nextPtr = (a)->nextPtr; \
} else { \
(b) = (a)->nextPtr; \
} \
if ((a)->nextPtr != NULL) { \
(a)->nextPtr->prevPtr = (a)->prevPtr; \
}
/*
* EvalFlag bits for Interp structures:
*
* TCL_ALLOW_EXCEPTIONS 1 means it's OK for the script to terminate with a
* code other than TCL_OK or TCL_ERROR; 0 means codes
* other than these should be turned into errors.
*/
#define TCL_ALLOW_EXCEPTIONS 4
#define TCL_EVAL_FILE 2
#define TCL_EVAL_CTX 8
/*
* Flag bits for Interp structures:
*
* DELETED: Non-zero means the interpreter has been deleted:
* don't process any more commands for it, and destroy
* the structure as soon as all nested invocations of
* Tcl_Eval are done.
* ERR_ALREADY_LOGGED: Non-zero means information has already been logged in
* iPtr->errorInfo for the current Tcl_Eval instance, so
* Tcl_Eval needn't log it (used to implement the "error
* message log" command).
* DONT_COMPILE_CMDS_INLINE: Non-zero means that the bytecode compiler should
* not compile any commands into an inline sequence of
* instructions. This is set 1, for example, when command
* traces are requested.
* RAND_SEED_INITIALIZED: Non-zero means that the randSeed value of the interp
* has not be initialized. This is set 1 when we first
* use the rand() or srand() functions.
* SAFE_INTERP: Non zero means that the current interp is a safe
* interp (i.e. it has only the safe commands installed,
* less priviledge than a regular interp).
* INTERP_TRACE_IN_PROGRESS: Non-zero means that an interp trace is currently
* active; so no further trace callbacks should be
* invoked.
* INTERP_ALTERNATE_WRONG_ARGS: Used for listing second and subsequent forms
* of the wrong-num-args string in Tcl_WrongNumArgs.
* Makes it append instead of replacing and uses
* different intermediate text.
*
* WARNING: For the sake of some extensions that have made use of former
* internal values, do not re-use the flag values 2 (formerly ERR_IN_PROGRESS)
* or 8 (formerly ERROR_CODE_SET).
*/
#define DELETED 1
#define ERR_ALREADY_LOGGED 4
#define DONT_COMPILE_CMDS_INLINE 0x20
#define RAND_SEED_INITIALIZED 0x40
#define SAFE_INTERP 0x80
#define INTERP_TRACE_IN_PROGRESS 0x200
#define INTERP_ALTERNATE_WRONG_ARGS 0x400
#define ERR_LEGACY_COPY 0x800
/*
* Maximum number of levels of nesting permitted in Tcl commands (used to
* catch infinite recursion).
*/
#define MAX_NESTING_DEPTH 1000
/*
* TIP#143 limit handler internal representation.
*/
struct LimitHandler {
int flags; /* The state of this particular handler. */
Tcl_LimitHandlerProc *handlerProc;
/* The handler callback. */
ClientData clientData; /* Opaque argument to the handler callback. */
Tcl_LimitHandlerDeleteProc *deleteProc;
/* How to delete the clientData. */
LimitHandler *prevPtr; /* Previous item in linked list of
* handlers. */
LimitHandler *nextPtr; /* Next item in linked list of handlers. */
};
/*
* Values for the LimitHandler flags field.
* LIMIT_HANDLER_ACTIVE - Whether the handler is currently being
* processed; handlers are never to be entered reentrantly.
* LIMIT_HANDLER_DELETED - Whether the handler has been deleted. This
* should not normally be observed because when a handler is
* deleted it is also spliced out of the list of handlers, but
* even so we will be careful.
*/
#define LIMIT_HANDLER_ACTIVE 0x01
#define LIMIT_HANDLER_DELETED 0x02
/*
* The macro below is used to modify a "char" value (e.g. by casting it to an
* unsigned character) so that it can be used safely with macros such as
* isspace.
*/
#define UCHAR(c) ((unsigned char) (c))
/*
* This macro is used to properly align the memory allocated by Tcl, giving
* the same alignment as the native malloc.
*/
#if defined(__APPLE__)
#define TCL_ALLOCALIGN 16
#else
#define TCL_ALLOCALIGN (2*sizeof(void *))
#endif
/*
* This macro is used to determine the offset needed to safely allocate any
* data structure in memory. Given a starting offset or size, it "rounds up"
* or "aligns" the offset to the next 8-byte boundary so that any data
* structure can be placed at the resulting offset without fear of an
* alignment error.
*
* WARNING!! DO NOT USE THIS MACRO TO ALIGN POINTERS: it will produce the
* wrong result on platforms that allocate addresses that are divisible by 4
* or 2. Only use it for offsets or sizes.
*
* This macro is only used by tclCompile.c in the core (Bug 926445). It
* however not be made file static, as extensions that touch bytecodes
* (notably tbcload) require it.
*/
#define TCL_ALIGN(x) (((int)(x) + 7) & ~7)
/*
* The following enum values are used to specify the runtime platform setting
* of the tclPlatform variable.
*/
typedef enum {
TCL_PLATFORM_UNIX = 0, /* Any Unix-like OS. */
TCL_PLATFORM_WINDOWS = 2 /* Any Microsoft Windows OS. */
} TclPlatformType;
/*
* The following enum values are used to indicate the translation of a Tcl
* channel. Declared here so that each platform can define
* TCL_PLATFORM_TRANSLATION to the native translation on that platform.
*/
typedef enum TclEolTranslation {
TCL_TRANSLATE_AUTO, /* Eol == \r, \n and \r\n. */
TCL_TRANSLATE_CR, /* Eol == \r. */
TCL_TRANSLATE_LF, /* Eol == \n. */
TCL_TRANSLATE_CRLF /* Eol == \r\n. */
} TclEolTranslation;
/*
* Flags for TclInvoke:
*
* TCL_INVOKE_HIDDEN Invoke a hidden command; if not set, invokes
* an exposed command.
* TCL_INVOKE_NO_UNKNOWN If set, "unknown" is not invoked if the
* command to be invoked is not found. Only has
* an effect if invoking an exposed command,
* i.e. if TCL_INVOKE_HIDDEN is not also set.
* TCL_INVOKE_NO_TRACEBACK Does not record traceback information if the
* invoked command returns an error. Used if the
* caller plans on recording its own traceback
* information.
*/
#define TCL_INVOKE_HIDDEN (1<<0)
#define TCL_INVOKE_NO_UNKNOWN (1<<1)
#define TCL_INVOKE_NO_TRACEBACK (1<<2)
/*
* The structure used as the internal representation of Tcl list objects. This
* struct is grown (reallocated and copied) as necessary to hold all the
* list's element pointers. The struct might contain more slots than currently
* used to hold all element pointers. This is done to make append operations
* faster.
*/
typedef struct List {
int refCount;
int maxElemCount; /* Total number of element array slots. */
int elemCount; /* Current number of list elements. */
int canonicalFlag; /* Set if the string representation was
* derived from the list representation. May
* be ignored if there is no string rep at
* all.*/
Tcl_Obj *elements; /* First list element; the struct is grown to
* accomodate all elements. */
} List;
/*
* Macro used to get the elements of a list object.
*/
#define ListRepPtr(listPtr) \
((List *) (listPtr)->internalRep.twoPtrValue.ptr1)
#define ListObjGetElements(listPtr, objc, objv) \
((objv) = &(ListRepPtr(listPtr)->elements), \
(objc) = ListRepPtr(listPtr)->elemCount)
#define ListObjLength(listPtr, len) \
((len) = ListRepPtr(listPtr)->elemCount)
#define TclListObjGetElements(interp, listPtr, objcPtr, objvPtr) \
(((listPtr)->typePtr == &tclListType) \
? ((ListObjGetElements((listPtr), *(objcPtr), *(objvPtr))), TCL_OK)\
: Tcl_ListObjGetElements((interp), (listPtr), (objcPtr), (objvPtr)))
#define TclListObjLength(interp, listPtr, lenPtr) \
(((listPtr)->typePtr == &tclListType) \
? ((ListObjLength((listPtr), *(lenPtr))), TCL_OK)\
: Tcl_ListObjLength((interp), (listPtr), (lenPtr)))
/*
* Macros providing a faster path to integers: Tcl_GetLongFromObj everywhere,
* Tcl_GetIntFromObj and TclGetIntForIndex on platforms where longs are ints.
*
* WARNING: these macros eval their args more than once.
*/
#define TclGetLongFromObj(interp, objPtr, longPtr) \
(((objPtr)->typePtr == &tclIntType) \
? ((*(longPtr) = (objPtr)->internalRep.longValue), TCL_OK) \
: Tcl_GetLongFromObj((interp), (objPtr), (longPtr)))
#if (LONG_MAX == INT_MAX)
#define TclGetIntFromObj(interp, objPtr, intPtr) \
(((objPtr)->typePtr == &tclIntType) \
? ((*(intPtr) = (objPtr)->internalRep.longValue), TCL_OK) \
: Tcl_GetIntFromObj((interp), (objPtr), (intPtr)))
#define TclGetIntForIndexM(interp, objPtr, endValue, idxPtr) \
(((objPtr)->typePtr == &tclIntType) \
? ((*(idxPtr) = (objPtr)->internalRep.longValue), TCL_OK) \
: TclGetIntForIndex((interp), (objPtr), (endValue), (idxPtr)))
#else
#define TclGetIntFromObj(interp, objPtr, intPtr) \
Tcl_GetIntFromObj((interp), (objPtr), (intPtr))
#define TclGetIntForIndexM(interp, objPtr, ignore, idxPtr) \
TclGetIntForIndex(interp, objPtr, ignore, idxPtr)
#endif
/*
* Flag values for TclTraceDictPath().
*
* DICT_PATH_READ indicates that all entries on the path must exist but no
* updates will be needed.
*
* DICT_PATH_UPDATE indicates that we are going to be doing an update at the
* tip of the path, so duplication of shared objects should be done along the
* way.
*
* DICT_PATH_EXISTS indicates that we are performing an existance test and a
* lookup failure should therefore not be an error. If (and only if) this flag
* is set, TclTraceDictPath() will return the special value
* DICT_PATH_NON_EXISTENT if the path is not traceable.
*
* DICT_PATH_CREATE (which also requires the DICT_PATH_UPDATE bit to be set)
* indicates that we are to create non-existant dictionaries on the path.
*/
#define DICT_PATH_READ 0
#define DICT_PATH_UPDATE 1
#define DICT_PATH_EXISTS 2
#define DICT_PATH_CREATE 5
#define DICT_PATH_NON_EXISTENT ((Tcl_Obj *) (void *) 1)
/*
*----------------------------------------------------------------
* Data structures related to the filesystem internals
*----------------------------------------------------------------
*/
/*
* The version_2 filesystem is private to Tcl. As and when these changes have
* been thoroughly tested and investigated a new public filesystem interface
* will be released. The aim is more versatile virtual filesystem interfaces,
* more efficiency in 'path' manipulation and usage, and cleaner filesystem
* code internally.
*/
#define TCL_FILESYSTEM_VERSION_2 ((Tcl_FSVersion) 0x2)
typedef ClientData (TclFSGetCwdProc2)(ClientData clientData);
/*
* The following types are used for getting and storing platform-specific file
* attributes in tclFCmd.c and the various platform-versions of that file.
* This is done to have as much common code as possible in the file attributes
* code. For more information about the callbacks, see TclFileAttrsCmd in
* tclFCmd.c.
*/
typedef int (TclGetFileAttrProc)(Tcl_Interp *interp, int objIndex,
Tcl_Obj *fileName, Tcl_Obj **attrObjPtrPtr);
typedef int (TclSetFileAttrProc)(Tcl_Interp *interp, int objIndex,
Tcl_Obj *fileName, Tcl_Obj *attrObjPtr);
typedef struct TclFileAttrProcs {
TclGetFileAttrProc *getProc;/* The procedure for getting attrs. */
TclSetFileAttrProc *setProc;/* The procedure for setting attrs. */
} TclFileAttrProcs;
/*
* Opaque handle used in pipeline routines to encapsulate platform-dependent
* state.
*/
typedef struct TclFile_ *TclFile;
/*
* The "globParameters" argument of the function TclGlob is an or'ed
* combination of the following values:
*/
#define TCL_GLOBMODE_NO_COMPLAIN 1
#define TCL_GLOBMODE_JOIN 2
#define TCL_GLOBMODE_DIR 4
#define TCL_GLOBMODE_TAILS 8
typedef enum Tcl_PathPart {
TCL_PATH_DIRNAME,
TCL_PATH_TAIL,
TCL_PATH_EXTENSION,
TCL_PATH_ROOT
} Tcl_PathPart;
/*
*----------------------------------------------------------------
* Data structures related to obsolete filesystem hooks
*----------------------------------------------------------------
*/
typedef int (TclStatProc_)(CONST char *path, struct stat *buf);
typedef int (TclAccessProc_)(CONST char *path, int mode);
typedef Tcl_Channel (TclOpenFileChannelProc_)(Tcl_Interp *interp,
CONST char *fileName, CONST char *modeString, int permissions);
/*
*----------------------------------------------------------------
* Data structures related to procedures
*----------------------------------------------------------------
*/
typedef Tcl_CmdProc *TclCmdProcType;
typedef Tcl_ObjCmdProc *TclObjCmdProcType;
/*
*----------------------------------------------------------------
* Data structures for process-global values.
*----------------------------------------------------------------
*/
typedef void (TclInitProcessGlobalValueProc)(char **valuePtr, int *lengthPtr,
Tcl_Encoding *encodingPtr);
/*
* A ProcessGlobalValue struct exists for each internal value in Tcl that is
* to be shared among several threads. Each thread sees a (Tcl_Obj) copy of
* the value, and the master is kept as a counted string, with epoch and mutex
* control. Each ProcessGlobalValue struct should be a static variable in some
* file.
*/
typedef struct ProcessGlobalValue {
int epoch; /* Epoch counter to detect changes in the
* master value. */
int numBytes; /* Length of the master string. */
char *value; /* The master string value. */
Tcl_Encoding encoding; /* system encoding when master string was
* initialized. */
TclInitProcessGlobalValueProc *proc;
/* A procedure to initialize the master string
* copy when a "get" request comes in before
* any "set" request has been received. */
Tcl_Mutex mutex; /* Enforce orderly access from multiple
* threads. */
Tcl_ThreadDataKey key; /* Key for per-thread data holding the
* (Tcl_Obj) copy for each thread. */
} ProcessGlobalValue;
/*
*----------------------------------------------------------------------
* Flags for TclParseNumber
*----------------------------------------------------------------------
*/
#define TCL_PARSE_DECIMAL_ONLY 1
/* Leading zero doesn't denote octal or
* hex. */
#define TCL_PARSE_OCTAL_ONLY 2
/* Parse octal even without prefix. */
#define TCL_PARSE_HEXADECIMAL_ONLY 4
/* Parse hexadecimal even without prefix. */
#define TCL_PARSE_INTEGER_ONLY 8
/* Disable floating point parsing. */
#define TCL_PARSE_SCAN_PREFIXES 16
/* Use [scan] rules dealing with 0?
* prefixes. */
#define TCL_PARSE_NO_WHITESPACE 32
/* Reject leading/trailing whitespace. */
/*
*----------------------------------------------------------------------
* Type values TclGetNumberFromObj
*----------------------------------------------------------------------
*/
#define TCL_NUMBER_LONG 1
#define TCL_NUMBER_WIDE 2
#define TCL_NUMBER_BIG 3
#define TCL_NUMBER_DOUBLE 4
#define TCL_NUMBER_NAN 5
/*
*----------------------------------------------------------------
* Variables shared among Tcl modules but not used by the outside world.
*----------------------------------------------------------------
*/
MODULE_SCOPE char *tclNativeExecutableName;
MODULE_SCOPE int tclFindExecutableSearchDone;
MODULE_SCOPE char *tclMemDumpFileName;
MODULE_SCOPE TclPlatformType tclPlatform;
MODULE_SCOPE Tcl_NotifierProcs tclOriginalNotifier;
/*
* TIP #233 (Virtualized Time)
* Data for the time hooks, if any.
*/
MODULE_SCOPE Tcl_GetTimeProc *tclGetTimeProcPtr;
MODULE_SCOPE Tcl_ScaleTimeProc *tclScaleTimeProcPtr;
MODULE_SCOPE ClientData tclTimeClientData;
/*
* Variables denoting the Tcl object types defined in the core.
*/
MODULE_SCOPE Tcl_ObjType tclBignumType;
MODULE_SCOPE Tcl_ObjType tclBooleanType;
MODULE_SCOPE Tcl_ObjType tclByteArrayType;
MODULE_SCOPE Tcl_ObjType tclByteCodeType;
MODULE_SCOPE Tcl_ObjType tclDoubleType;
MODULE_SCOPE Tcl_ObjType tclEndOffsetType;
MODULE_SCOPE Tcl_ObjType tclIntType;
MODULE_SCOPE Tcl_ObjType tclListType;
MODULE_SCOPE Tcl_ObjType tclDictType;
MODULE_SCOPE Tcl_ObjType tclProcBodyType;
MODULE_SCOPE Tcl_ObjType tclStringType;
MODULE_SCOPE Tcl_ObjType tclArraySearchType;
MODULE_SCOPE Tcl_ObjType tclEnsembleCmdType;
#ifndef NO_WIDE_TYPE
MODULE_SCOPE Tcl_ObjType tclWideIntType;
#endif
MODULE_SCOPE Tcl_ObjType tclRegexpType;
/*
* Variables denoting the hash key types defined in the core.
*/
MODULE_SCOPE Tcl_HashKeyType tclArrayHashKeyType;
MODULE_SCOPE Tcl_HashKeyType tclOneWordHashKeyType;
MODULE_SCOPE Tcl_HashKeyType tclStringHashKeyType;
MODULE_SCOPE Tcl_HashKeyType tclObjHashKeyType;
/*
* The head of the list of free Tcl objects, and the total number of Tcl
* objects ever allocated and freed.
*/
MODULE_SCOPE Tcl_Obj * tclFreeObjList;
#ifdef TCL_COMPILE_STATS
MODULE_SCOPE long tclObjsAlloced;
MODULE_SCOPE long tclObjsFreed;
#define TCL_MAX_SHARED_OBJ_STATS 5
MODULE_SCOPE long tclObjsShared[TCL_MAX_SHARED_OBJ_STATS];
#endif /* TCL_COMPILE_STATS */
/*
* Pointer to a heap-allocated string of length zero that the Tcl core uses as
* the value of an empty string representation for an object. This value is
* shared by all new objects allocated by Tcl_NewObj.
*/
MODULE_SCOPE char * tclEmptyStringRep;
MODULE_SCOPE char tclEmptyString;
/*
*----------------------------------------------------------------
* Procedures shared among Tcl modules but not used by the outside world:
*----------------------------------------------------------------
*/
MODULE_SCOPE void TclAdvanceContinuations(int* line, int** next, int loc);
MODULE_SCOPE void TclAdvanceLines(int *line, const char *start,
const char *end);
MODULE_SCOPE void TclArgumentEnter(Tcl_Interp* interp,
Tcl_Obj* objv[], int objc, CmdFrame* cf);
MODULE_SCOPE void TclArgumentRelease(Tcl_Interp* interp,
Tcl_Obj* objv[], int objc);
MODULE_SCOPE void TclArgumentGet(Tcl_Interp* interp, Tcl_Obj* obj,
CmdFrame **cfPtrPtr, int *wordPtr);
MODULE_SCOPE void TclArgumentBCEnter(Tcl_Interp *interp,
Tcl_Obj* objv[], int objc,
void *codePtr, CmdFrame *cfPtr, int pc);
MODULE_SCOPE void TclArgumentBCRelease(Tcl_Interp *interp,
Tcl_Obj *objv[], int objc,
void *codePtr, int pc);
MODULE_SCOPE int TclArraySet(Tcl_Interp *interp,
Tcl_Obj *arrayNameObj, Tcl_Obj *arrayElemObj);
MODULE_SCOPE double TclBignumToDouble(mp_int *bignum);
MODULE_SCOPE int TclByteArrayMatch(const unsigned char *string,
int strLen, const unsigned char *pattern,
int ptnLen, int flags);
MODULE_SCOPE double TclCeil(mp_int *a);
MODULE_SCOPE int TclCheckBadOctal(Tcl_Interp *interp, const char *value);
MODULE_SCOPE int TclChanCaughtErrorBypass(Tcl_Interp *interp,
Tcl_Channel chan);
MODULE_SCOPE void TclCleanupLiteralTable(Tcl_Interp *interp,
LiteralTable *tablePtr);
MODULE_SCOPE ContLineLoc* TclContinuationsEnter(Tcl_Obj *objPtr, int num,
int *loc);
MODULE_SCOPE void TclContinuationsEnterDerived(Tcl_Obj *objPtr,
int start, int *clNext);
MODULE_SCOPE ContLineLoc* TclContinuationsGet(Tcl_Obj *objPtr);
MODULE_SCOPE void TclContinuationsCopy(Tcl_Obj *objPtr,
Tcl_Obj *originObjPtr);
MODULE_SCOPE int TclDoubleDigits(char *buf, double value, int *signum);
MODULE_SCOPE void TclDeleteNamespaceVars(Namespace *nsPtr);
/* TIP #280 - Modified token based evulation, with line information. */
MODULE_SCOPE int TclEvalEx(Tcl_Interp *interp, const char *script,
int numBytes, int flags, int line,
int *clNextOuter, CONST char *outerScript);
MODULE_SCOPE int TclFileAttrsCmd(Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE int TclFileCopyCmd(Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE int TclFileDeleteCmd(Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE int TclFileMakeDirsCmd(Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE int TclFileRenameCmd(Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE void TclCreateLateExitHandler(Tcl_ExitProc *proc,
ClientData clientData);
MODULE_SCOPE void TclDeleteLateExitHandler(Tcl_ExitProc *proc,
ClientData clientData);
MODULE_SCOPE void TclFinalizeAllocSubsystem(void);
MODULE_SCOPE void TclFinalizeAsync(void);
MODULE_SCOPE void TclFinalizeDoubleConversion(void);
MODULE_SCOPE void TclFinalizeEncodingSubsystem(void);
MODULE_SCOPE void TclFinalizeEnvironment(void);
MODULE_SCOPE void TclFinalizeExecution(void);
MODULE_SCOPE void TclFinalizeIOSubsystem(void);
MODULE_SCOPE void TclFinalizeFilesystem(void);
MODULE_SCOPE void TclResetFilesystem(void);
MODULE_SCOPE void TclFinalizeLoad(void);
MODULE_SCOPE void TclFinalizeLock(void);
MODULE_SCOPE void TclFinalizeMemorySubsystem(void);
MODULE_SCOPE void TclFinalizeNotifier(void);
MODULE_SCOPE void TclFinalizeObjects(void);
MODULE_SCOPE void TclFinalizePreserve(void);
MODULE_SCOPE void TclFinalizeSynchronization(void);
MODULE_SCOPE void TclFinalizeThreadAlloc(void);
MODULE_SCOPE void TclFinalizeThreadData(void);
MODULE_SCOPE void TclFinalizeThreadObjects(void);
MODULE_SCOPE double TclFloor(mp_int *a);
MODULE_SCOPE void TclFormatNaN(double value, char *buffer);
MODULE_SCOPE int TclFSFileAttrIndex(Tcl_Obj *pathPtr,
const char *attributeName, int *indexPtr);
MODULE_SCOPE void TclFSUnloadTempFile(Tcl_LoadHandle loadHandle);
MODULE_SCOPE int * TclGetAsyncReadyPtr(void);
MODULE_SCOPE Tcl_Obj * TclGetBgErrorHandler(Tcl_Interp *interp);
MODULE_SCOPE int TclGetChannelFromObj(Tcl_Interp *interp,
Tcl_Obj *objPtr, Tcl_Channel *chanPtr,
int *modePtr, int flags);
MODULE_SCOPE int TclGetNumberFromObj(Tcl_Interp *interp,
Tcl_Obj *objPtr, ClientData *clientDataPtr,
int *typePtr);
MODULE_SCOPE int TclGetOpenModeEx(Tcl_Interp *interp,
const char *modeString, int *seekFlagPtr,
int *binaryPtr);
MODULE_SCOPE Tcl_Obj * TclGetProcessGlobalValue(ProcessGlobalValue *pgvPtr);
MODULE_SCOPE const char *TclGetSrcInfoForCmd(Interp *iPtr, int *lenPtr);
MODULE_SCOPE int TclGlob(Tcl_Interp *interp, char *pattern,
Tcl_Obj *unquotedPrefix, int globFlags,
Tcl_GlobTypeData *types);
MODULE_SCOPE int TclIncrObj(Tcl_Interp *interp, Tcl_Obj *valuePtr,
Tcl_Obj *incrPtr);
MODULE_SCOPE Tcl_Obj * TclIncrObjVar2(Tcl_Interp *interp, Tcl_Obj *part1Ptr,
Tcl_Obj *part2Ptr, Tcl_Obj *incrPtr, int flags);
MODULE_SCOPE int TclInfoExistsCmd(ClientData dummy, Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE Tcl_Obj * TclInfoFrame(Tcl_Interp *interp, CmdFrame *framePtr);
MODULE_SCOPE int TclInfoGlobalsCmd(ClientData dummy, Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE int TclInfoLocalsCmd(ClientData dummy, Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE int TclInfoVarsCmd(ClientData dummy, Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE void TclInitAlloc(void);
MODULE_SCOPE void TclInitDbCkalloc(void);
MODULE_SCOPE void TclInitDoubleConversion(void);
MODULE_SCOPE void TclInitEmbeddedConfigurationInformation(
Tcl_Interp *interp);
MODULE_SCOPE void TclInitEncodingSubsystem(void);
MODULE_SCOPE void TclInitIOSubsystem(void);
MODULE_SCOPE void TclInitLimitSupport(Tcl_Interp *interp);
MODULE_SCOPE void TclInitNamespaceSubsystem(void);
MODULE_SCOPE void TclInitNotifier(void);
MODULE_SCOPE void TclInitObjSubsystem(void);
MODULE_SCOPE void TclInitSubsystems(void);
MODULE_SCOPE int TclInterpReady(Tcl_Interp *interp);
MODULE_SCOPE int TclIsLocalScalar(const char *src, int len);
MODULE_SCOPE int TclJoinThread(Tcl_ThreadId id, int *result);
MODULE_SCOPE void TclLimitRemoveAllHandlers(Tcl_Interp *interp);
MODULE_SCOPE Tcl_Obj * TclLindexList(Tcl_Interp *interp,
Tcl_Obj *listPtr, Tcl_Obj *argPtr);
MODULE_SCOPE Tcl_Obj * TclLindexFlat(Tcl_Interp *interp, Tcl_Obj *listPtr,
int indexCount, Tcl_Obj *const indexArray[]);
/* TIP #280 */
MODULE_SCOPE void TclListLines(Tcl_Obj *listObj, int line, int n,
int *lines, Tcl_Obj *const *elems);
MODULE_SCOPE Tcl_Obj * TclListObjCopy(Tcl_Interp *interp, Tcl_Obj *listPtr);
MODULE_SCOPE int TclLoadFile(Tcl_Interp *interp, Tcl_Obj *pathPtr,
int symc, const char *symbols[],
Tcl_PackageInitProc **procPtrs[],
Tcl_LoadHandle *handlePtr,
ClientData *clientDataPtr,
Tcl_FSUnloadFileProc **unloadProcPtr);
MODULE_SCOPE Tcl_Obj * TclLsetList(Tcl_Interp *interp, Tcl_Obj *listPtr,
Tcl_Obj *indexPtr, Tcl_Obj *valuePtr);
MODULE_SCOPE Tcl_Obj * TclLsetFlat(Tcl_Interp *interp, Tcl_Obj *listPtr,
int indexCount, Tcl_Obj *const indexArray[],
Tcl_Obj *valuePtr);
MODULE_SCOPE Tcl_Command TclMakeEnsemble(Tcl_Interp *interp, const char *name,
const EnsembleImplMap map[]);
MODULE_SCOPE int TclMarkList(Tcl_Interp *interp, const char *list,
const char *end, int *argcPtr,
const int **argszPtr, const char ***argvPtr);
MODULE_SCOPE int TclMergeReturnOptions(Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[], Tcl_Obj **optionsPtrPtr,
int *codePtr, int *levelPtr);
MODULE_SCOPE int TclNokia770Doubles(void);
MODULE_SCOPE void TclObjVarErrMsg(Tcl_Interp *interp, Tcl_Obj *part1Ptr,
Tcl_Obj *part2Ptr, const char *operation,
const char *reason, int index);
MODULE_SCOPE int TclObjInvokeNamespace(Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[],
Tcl_Namespace *nsPtr, int flags);
MODULE_SCOPE int TclObjUnsetVar2(Tcl_Interp *interp,
Tcl_Obj *part1Ptr, Tcl_Obj *part2Ptr, int flags);
MODULE_SCOPE int TclParseBackslash(const char *src,
int numBytes, int *readPtr, char *dst);
MODULE_SCOPE int TclParseHex(const char *src, int numBytes,
Tcl_UniChar *resultPtr);
MODULE_SCOPE int TclParseNumber(Tcl_Interp *interp, Tcl_Obj *objPtr,
const char *expected, const char *bytes,
int numBytes, const char **endPtrPtr, int flags);
MODULE_SCOPE void TclParseInit(Tcl_Interp *interp, const char *string,
int numBytes, Tcl_Parse *parsePtr);
MODULE_SCOPE int TclParseAllWhiteSpace(const char *src, int numBytes);
MODULE_SCOPE int TclProcessReturn(Tcl_Interp *interp,
int code, int level, Tcl_Obj *returnOpts);
#ifndef TCL_NO_STACK_CHECK
MODULE_SCOPE int TclpGetCStackParams(int **stackBoundPtr);
#endif
MODULE_SCOPE int TclpObjLstat(Tcl_Obj *pathPtr, Tcl_StatBuf *buf);
MODULE_SCOPE Tcl_Obj * TclpTempFileName(void);
MODULE_SCOPE Tcl_Obj * TclNewFSPathObj(Tcl_Obj *dirPtr, const char *addStrRep,
int len);
MODULE_SCOPE int TclpDeleteFile(const char *path);
MODULE_SCOPE void TclpFinalizeCondition(Tcl_Condition *condPtr);
MODULE_SCOPE void TclpFinalizeMutex(Tcl_Mutex *mutexPtr);
MODULE_SCOPE void TclpFinalizePipes(void);
MODULE_SCOPE void TclpFinalizeSockets(void);
MODULE_SCOPE int TclpThreadCreate(Tcl_ThreadId *idPtr,
Tcl_ThreadCreateProc proc, ClientData clientData,
int stackSize, int flags);
MODULE_SCOPE int TclpFindVariable(const char *name, int *lengthPtr);
MODULE_SCOPE void TclpInitLibraryPath(char **valuePtr,
int *lengthPtr, Tcl_Encoding *encodingPtr);
MODULE_SCOPE void TclpInitLock(void);
MODULE_SCOPE void TclpInitPlatform(void);
MODULE_SCOPE void TclpInitUnlock(void);
MODULE_SCOPE int TclpLoadFile(Tcl_Interp *interp, Tcl_Obj *pathPtr,
const char *sym1, const char *sym2,
Tcl_PackageInitProc **proc1Ptr,
Tcl_PackageInitProc **proc2Ptr,
ClientData *clientDataPtr,
Tcl_FSUnloadFileProc **unloadProcPtr);
MODULE_SCOPE Tcl_Obj * TclpObjListVolumes(void);
MODULE_SCOPE void TclpMasterLock(void);
MODULE_SCOPE void TclpMasterUnlock(void);
MODULE_SCOPE int TclpMatchFiles(Tcl_Interp *interp, char *separators,
Tcl_DString *dirPtr, char *pattern, char *tail);
MODULE_SCOPE int TclpObjNormalizePath(Tcl_Interp *interp,
Tcl_Obj *pathPtr, int nextCheckpoint);
MODULE_SCOPE void TclpNativeJoinPath(Tcl_Obj *prefix, char *joining);
MODULE_SCOPE Tcl_Obj * TclpNativeSplitPath(Tcl_Obj *pathPtr, int *lenPtr);
MODULE_SCOPE Tcl_PathType TclpGetNativePathType(Tcl_Obj *pathPtr,
int *driveNameLengthPtr, Tcl_Obj **driveNameRef);
MODULE_SCOPE int TclCrossFilesystemCopy(Tcl_Interp *interp,
Tcl_Obj *source, Tcl_Obj *target);
MODULE_SCOPE int TclpMatchInDirectory(Tcl_Interp *interp,
Tcl_Obj *resultPtr, Tcl_Obj *pathPtr,
const char *pattern, Tcl_GlobTypeData *types);
MODULE_SCOPE ClientData TclpGetNativeCwd(ClientData clientData);
MODULE_SCOPE Tcl_FSDupInternalRepProc TclNativeDupInternalRep;
MODULE_SCOPE Tcl_Obj * TclpObjLink(Tcl_Obj *pathPtr, Tcl_Obj *toPtr,
int linkType);
MODULE_SCOPE int TclpObjChdir(Tcl_Obj *pathPtr);
MODULE_SCOPE Tcl_Obj * TclPathPart(Tcl_Interp *interp, Tcl_Obj *pathPtr,
Tcl_PathPart portion);
#ifndef TclpPanic
MODULE_SCOPE void TclpPanic(const char *format, ...);
#endif
MODULE_SCOPE char * TclpReadlink(const char *fileName,
Tcl_DString *linkPtr);
#ifndef TclpReleaseFile
MODULE_SCOPE void TclpReleaseFile(TclFile file);
#endif
MODULE_SCOPE void TclpSetInterfaces(void);
MODULE_SCOPE void TclpSetVariables(Tcl_Interp *interp);
MODULE_SCOPE void TclpUnloadFile(Tcl_LoadHandle loadHandle);
MODULE_SCOPE void * TclpThreadDataKeyGet(Tcl_ThreadDataKey *keyPtr);
MODULE_SCOPE void TclpThreadDataKeySet(Tcl_ThreadDataKey *keyPtr,
void *data);
MODULE_SCOPE void TclpThreadExit(int status);
MODULE_SCOPE size_t TclpThreadGetStackSize(void);
MODULE_SCOPE void TclRememberCondition(Tcl_Condition *mutex);
MODULE_SCOPE void TclRememberJoinableThread(Tcl_ThreadId id);
MODULE_SCOPE void TclRememberMutex(Tcl_Mutex *mutex);
MODULE_SCOPE void TclRemoveScriptLimitCallbacks(Tcl_Interp *interp);
MODULE_SCOPE int TclReToGlob(Tcl_Interp *interp, const char *reStr,
int reStrLen, Tcl_DString *dsPtr, int *flagsPtr);
MODULE_SCOPE void TclSetBgErrorHandler(Tcl_Interp *interp,
Tcl_Obj *cmdPrefix);
MODULE_SCOPE void TclSetBignumIntRep(Tcl_Obj *objPtr,
mp_int *bignumValue);
MODULE_SCOPE void TclSetCmdNameObj(Tcl_Interp *interp, Tcl_Obj *objPtr,
Command *cmdPtr);
MODULE_SCOPE void TclSetProcessGlobalValue(ProcessGlobalValue *pgvPtr,
Tcl_Obj *newValue, Tcl_Encoding encoding);
MODULE_SCOPE void TclSignalExitThread(Tcl_ThreadId id, int result);
MODULE_SCOPE void * TclStackRealloc(Tcl_Interp *interp, void *ptr,
int numBytes);
MODULE_SCOPE int TclStringMatch(const char *str, int strLen,
const char *pattern, int ptnLen, int flags);
MODULE_SCOPE int TclStringMatchObj(Tcl_Obj *stringObj,
Tcl_Obj *patternObj, int flags);
MODULE_SCOPE Tcl_Obj * TclStringObjReverse(Tcl_Obj *objPtr);
MODULE_SCOPE int TclSubstTokens(Tcl_Interp *interp, Tcl_Token *tokenPtr,
int count, int *tokensLeftPtr, int line,
int *clNextOuter, CONST char *outerScript);
MODULE_SCOPE void TclTransferResult(Tcl_Interp *sourceInterp, int result,
Tcl_Interp *targetInterp);
MODULE_SCOPE Tcl_Obj * TclpNativeToNormalized(ClientData clientData);
MODULE_SCOPE Tcl_Obj * TclpFilesystemPathType(Tcl_Obj *pathPtr);
MODULE_SCOPE Tcl_PackageInitProc *TclpFindSymbol(Tcl_Interp *interp,
Tcl_LoadHandle loadHandle, const char *symbol);
MODULE_SCOPE int TclpDlopen(Tcl_Interp *interp, Tcl_Obj *pathPtr,
Tcl_LoadHandle *loadHandle,
Tcl_FSUnloadFileProc **unloadProcPtr);
MODULE_SCOPE int TclpUtime(Tcl_Obj *pathPtr, struct utimbuf *tval);
#ifdef TCL_LOAD_FROM_MEMORY
MODULE_SCOPE void * TclpLoadMemoryGetBuffer(Tcl_Interp *interp, int size);
MODULE_SCOPE int TclpLoadMemory(Tcl_Interp *interp, void *buffer,
int size, int codeSize, Tcl_LoadHandle *loadHandle,
Tcl_FSUnloadFileProc **unloadProcPtr);
#endif
MODULE_SCOPE void TclInitThreadStorage(void);
MODULE_SCOPE void TclpFinalizeThreadDataThread(void);
MODULE_SCOPE void TclFinalizeThreadStorage(void);
#ifdef TCL_WIDE_CLICKS
MODULE_SCOPE Tcl_WideInt TclpGetWideClicks(void);
MODULE_SCOPE double TclpWideClicksToNanoseconds(Tcl_WideInt clicks);
#endif
MODULE_SCOPE Tcl_Obj * TclDisassembleByteCodeObj(Tcl_Obj *objPtr);
/*
*----------------------------------------------------------------
* Command procedures in the generic core:
*----------------------------------------------------------------
*/
MODULE_SCOPE int Tcl_AfterObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_AppendObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_ApplyObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_ArrayObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_BinaryObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_BreakObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_CaseObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_CatchObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_CdObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE Tcl_Command TclInitChanCmd(Tcl_Interp *interp);
MODULE_SCOPE int TclChanCreateObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclChanPostEventObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE void TclClockInit(Tcl_Interp *interp);
MODULE_SCOPE int TclClockOldscanObjCmd(
ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_CloseObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_ConcatObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_ContinueObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE Tcl_TimerToken TclCreateAbsoluteTimerHandler(
Tcl_Time *timePtr, Tcl_TimerProc *proc,
ClientData clientData);
MODULE_SCOPE int TclDefaultBgErrorHandlerObjCmd(
ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE Tcl_Command TclInitDictCmd(Tcl_Interp *interp);
MODULE_SCOPE int Tcl_DisassembleObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_EncodingObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_EofObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_ErrorObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_EvalObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_ExecObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_ExitObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_ExprObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_FblockedObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_FconfigureObjCmd(
ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_FcopyObjCmd(ClientData dummy,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_FileObjCmd(ClientData dummy,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_FileEventObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_FlushObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_ForObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_ForeachObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_FormatObjCmd(ClientData dummy,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_GetsObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_GlobalObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_GlobObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_IfObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_IncrObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE Tcl_Command TclInitInfoCmd(Tcl_Interp *interp);
MODULE_SCOPE int Tcl_InterpObjCmd(ClientData clientData,
Tcl_Interp *interp, int argc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_JoinObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_LappendObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_LassignObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_LindexObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_LinsertObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_LlengthObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_ListObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_LoadObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_LrangeObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_LrepeatObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_LreplaceObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_LreverseObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_LsearchObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_LsetObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_LsortObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_NamespaceObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_OpenObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_PackageObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_PidObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_PutsObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_PwdObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_ReadObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_RegexpObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_RegsubObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_RenameObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_ReturnObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_ScanObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_SeekObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_SetObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_SplitObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_SocketObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_SourceObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE Tcl_Command TclInitStringCmd(Tcl_Interp *interp);
MODULE_SCOPE int Tcl_SubstObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_SwitchObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_TellObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_TimeObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_TraceObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_UnloadObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_UnsetObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_UpdateObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_UplevelObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_UpvarObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_VariableObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_VwaitObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int Tcl_WhileObjCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
/*
*----------------------------------------------------------------
* Compilation procedures for commands in the generic core:
*----------------------------------------------------------------
*/
MODULE_SCOPE int TclCompileAppendCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileBreakCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileCatchCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileContinueCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileDictAppendCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileDictForCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileDictGetCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileDictIncrCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileDictLappendCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileDictSetCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileDictUpdateCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileEnsemble(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileExprCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileForCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileForeachCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileGlobalCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileIfCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileInfoExistsCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileIncrCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileLappendCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileLassignCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileLindexCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileListCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileLlengthCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileLsetCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileNamespaceCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileNoOp(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileRegexpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileReturnCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileSetCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileStringCmpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileStringEqualCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileStringIndexCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileStringLenCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileStringMatchCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileSwitchCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileUpvarCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileVariableCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclCompileWhileCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclInvertOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileInvertOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclNotOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileNotOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclAddOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileAddOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclMulOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileMulOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclAndOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileAndOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclOrOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileOrOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclXorOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileXorOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclPowOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompilePowOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclLshiftOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileLshiftOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclRshiftOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileRshiftOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclModOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileModOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclNeqOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileNeqOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclStrneqOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileStrneqOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclInOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileInOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclNiOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileNiOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclMinusOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileMinusOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclDivOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileDivOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclLessOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileLessOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclLeqOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileLeqOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclGreaterOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileGreaterOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclGeqOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileGeqOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclEqOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileEqOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
MODULE_SCOPE int TclStreqOpCmd(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
MODULE_SCOPE int TclCompileStreqOpCmd(Tcl_Interp *interp,
Tcl_Parse *parsePtr, Command *cmdPtr,
struct CompileEnv *envPtr);
/*
* Functions defined in generic/tclVar.c and currenttly exported only for use
* by the bytecode compiler and engine. Some of these could later be placed in
* the public interface.
*/
MODULE_SCOPE Var * TclObjLookupVarEx(Tcl_Interp * interp,
Tcl_Obj *part1Ptr, Tcl_Obj *part2Ptr, int flags,
const char *msg, const int createPart1,
const int createPart2, Var **arrayPtrPtr);
MODULE_SCOPE Var * TclLookupArrayElement(Tcl_Interp *interp,
Tcl_Obj *arrayNamePtr, Tcl_Obj *elNamePtr,
const int flags, const char *msg,
const int createPart1, const int createPart2,
Var *arrayPtr, int index);
MODULE_SCOPE Tcl_Obj * TclPtrGetVar(Tcl_Interp *interp,
Var *varPtr, Var *arrayPtr, Tcl_Obj *part1Ptr,
Tcl_Obj *part2Ptr, const int flags, int index);
MODULE_SCOPE Tcl_Obj * TclPtrSetVar(Tcl_Interp *interp,
Var *varPtr, Var *arrayPtr, Tcl_Obj *part1Ptr,
Tcl_Obj *part2Ptr, Tcl_Obj *newValuePtr,
const int flags, int index);
MODULE_SCOPE Tcl_Obj * TclPtrIncrObjVar(Tcl_Interp *interp,
Var *varPtr, Var *arrayPtr, Tcl_Obj *part1Ptr,
Tcl_Obj *part2Ptr, Tcl_Obj *incrPtr,
const int flags, int index);
MODULE_SCOPE int TclPtrObjMakeUpvar(Tcl_Interp *interp, Var *otherPtr,
Tcl_Obj *myNamePtr, int myFlags, int index);
MODULE_SCOPE void TclInvalidateNsPath(Namespace *nsPtr);
/*
* The new extended interface to the variable traces.
*/
MODULE_SCOPE int TclObjCallVarTraces(Interp *iPtr, Var *arrayPtr,
Var *varPtr, Tcl_Obj *part1Ptr, Tcl_Obj *part2Ptr,
int flags, int leaveErrMsg, int index);
/*
* So tclObj.c and tclDictObj.c can share these implementations.
*/
MODULE_SCOPE int TclCompareObjKeys(void *keyPtr, Tcl_HashEntry *hPtr);
MODULE_SCOPE void TclFreeObjEntry(Tcl_HashEntry *hPtr);
MODULE_SCOPE unsigned TclHashObjKey(Tcl_HashTable *tablePtr, void *keyPtr);
/*
*----------------------------------------------------------------
* Macros used by the Tcl core to create and release Tcl objects.
* TclNewObj(objPtr) creates a new object denoting an empty string.
* TclDecrRefCount(objPtr) decrements the object's reference count, and frees
* the object if its reference count is zero. These macros are inline versions
* of Tcl_NewObj() and Tcl_DecrRefCount(). Notice that the names differ in not
* having a "_" after the "Tcl". Notice also that these macros reference their
* argument more than once, so you should avoid calling them with an
* expression that is expensive to compute or has side effects. The ANSI C
* "prototypes" for these macros are:
*
* MODULE_SCOPE void TclNewObj(Tcl_Obj *objPtr);
* MODULE_SCOPE void TclDecrRefCount(Tcl_Obj *objPtr);
*
* These macros are defined in terms of two macros that depend on memory
* allocator in use: TclAllocObjStorage, TclFreeObjStorage. They are defined
* below.
*----------------------------------------------------------------
*/
/*
* DTrace object allocation probe macros.
*/
#ifdef USE_DTRACE
#include "tclDTrace.h"
#define TCL_DTRACE_OBJ_CREATE(objPtr) TCL_OBJ_CREATE(objPtr)
#define TCL_DTRACE_OBJ_FREE(objPtr) TCL_OBJ_FREE(objPtr)
#else /* USE_DTRACE */
#define TCL_DTRACE_OBJ_CREATE(objPtr) {}
#define TCL_DTRACE_OBJ_FREE(objPtr) {}
#endif /* USE_DTRACE */
#ifdef TCL_COMPILE_STATS
# define TclIncrObjsAllocated() \
tclObjsAlloced++
# define TclIncrObjsFreed() \
tclObjsFreed++
#else
# define TclIncrObjsAllocated()
# define TclIncrObjsFreed()
#endif /* TCL_COMPILE_STATS */
#ifndef TCL_MEM_DEBUG
# define TclNewObj(objPtr) \
TclIncrObjsAllocated(); \
TclAllocObjStorage(objPtr); \
(objPtr)->refCount = 0; \
(objPtr)->bytes = tclEmptyStringRep; \
(objPtr)->length = 0; \
(objPtr)->typePtr = NULL; \
TCL_DTRACE_OBJ_CREATE(objPtr)
/*
* Invalidate the string rep first so we can use the bytes value for our
* pointer chain, and signal an obj deletion (as opposed to shimmering) with
* 'length == -1'.
* Use empty 'if ; else' to handle use in unbraced outer if/else conditions.
*/
# define TclDecrRefCount(objPtr) \
if (--(objPtr)->refCount > 0) ; else { \
if (!(objPtr)->typePtr || !(objPtr)->typePtr->freeIntRepProc) { \
TCL_DTRACE_OBJ_FREE(objPtr); \
if ((objPtr)->bytes \
&& ((objPtr)->bytes != tclEmptyStringRep)) { \
ckfree((char *) (objPtr)->bytes); \
} \
(objPtr)->length = -1; \
TclFreeObjStorage(objPtr); \
TclIncrObjsFreed(); \
} else { \
TclFreeObj(objPtr); \
} \
}
#if defined(PURIFY)
/*
* The PURIFY mode is like the regular mode, but instead of doing block
* Tcl_Obj allocation and keeping a freed list for efficiency, it always
* allocates and frees a single Tcl_Obj so that tools like Purify can better
* track memory leaks.
*/
# define TclAllocObjStorage(objPtr) \
(objPtr) = (Tcl_Obj *) Tcl_Alloc(sizeof(Tcl_Obj))
# define TclFreeObjStorage(objPtr) \
ckfree((char *) (objPtr))
#undef USE_THREAD_ALLOC
#elif defined(TCL_THREADS) && defined(USE_THREAD_ALLOC)
/*
* The TCL_THREADS mode is like the regular mode but allocates Tcl_Obj's from
* per-thread caches.
*/
MODULE_SCOPE Tcl_Obj * TclThreadAllocObj(void);
MODULE_SCOPE void TclThreadFreeObj(Tcl_Obj *);
MODULE_SCOPE Tcl_Mutex *TclpNewAllocMutex(void);
MODULE_SCOPE void TclFreeAllocCache(void *);
MODULE_SCOPE void * TclpGetAllocCache(void);
MODULE_SCOPE void TclpSetAllocCache(void *);
MODULE_SCOPE void TclpFreeAllocMutex(Tcl_Mutex *mutex);
MODULE_SCOPE void TclpFreeAllocCache(void *);
# define TclAllocObjStorage(objPtr) \
(objPtr) = TclThreadAllocObj()
# define TclFreeObjStorage(objPtr) \
TclThreadFreeObj((objPtr))
#else /* not PURIFY or USE_THREAD_ALLOC */
#ifdef TCL_THREADS
/* declared in tclObj.c */
MODULE_SCOPE Tcl_Mutex tclObjMutex;
#endif
# define TclAllocObjStorage(objPtr) \
Tcl_MutexLock(&tclObjMutex); \
if (tclFreeObjList == NULL) { \
TclAllocateFreeObjects(); \
} \
(objPtr) = tclFreeObjList; \
tclFreeObjList = (Tcl_Obj *) \
tclFreeObjList->internalRep.otherValuePtr; \
Tcl_MutexUnlock(&tclObjMutex)
# define TclFreeObjStorage(objPtr) \
Tcl_MutexLock(&tclObjMutex); \
(objPtr)->internalRep.otherValuePtr = (void *) tclFreeObjList; \
tclFreeObjList = (objPtr); \
Tcl_MutexUnlock(&tclObjMutex)
#endif
#else /* TCL_MEM_DEBUG */
MODULE_SCOPE void TclDbInitNewObj(Tcl_Obj *objPtr, CONST char *file,
int line);
# define TclDbNewObj(objPtr, file, line) \
TclIncrObjsAllocated(); \
(objPtr) = (Tcl_Obj *) Tcl_DbCkalloc(sizeof(Tcl_Obj), (file), (line)); \
TclDbInitNewObj((objPtr), (file), (line)); \
TCL_DTRACE_OBJ_CREATE(objPtr)
# define TclNewObj(objPtr) \
TclDbNewObj(objPtr, __FILE__, __LINE__);
# define TclDecrRefCount(objPtr) \
Tcl_DbDecrRefCount(objPtr, __FILE__, __LINE__)
# define TclNewListObjDirect(objc, objv) \
TclDbNewListObjDirect(objc, objv, __FILE__, __LINE__)
#undef USE_THREAD_ALLOC
#endif /* TCL_MEM_DEBUG */
/*
*----------------------------------------------------------------
* Macro used by the Tcl core to set a Tcl_Obj's string representation to a
* copy of the "len" bytes starting at "bytePtr". This code works even if the
* byte array contains NULLs as long as the length is correct. Because "len"
* is referenced multiple times, it should be as simple an expression as
* possible. The ANSI C "prototype" for this macro is:
*
* MODULE_SCOPE void TclInitStringRep(Tcl_Obj *objPtr, char *bytePtr, int len);
*
* This macro should only be called on an unshared objPtr where
* objPtr->typePtr->freeIntRepProc == NULL
*----------------------------------------------------------------
*/
#define TclInitStringRep(objPtr, bytePtr, len) \
if ((len) == 0) { \
(objPtr)->bytes = tclEmptyStringRep; \
(objPtr)->length = 0; \
} else { \
(objPtr)->bytes = (char *) ckalloc((unsigned) ((len) + 1)); \
memcpy((void *) (objPtr)->bytes, (void *) (bytePtr), \
(unsigned) (len)); \
(objPtr)->bytes[len] = '\0'; \
(objPtr)->length = (len); \
}
/*
*----------------------------------------------------------------
* Macro used by the Tcl core to get the string representation's byte array
* pointer from a Tcl_Obj. This is an inline version of Tcl_GetString(). The
* macro's expression result is the string rep's byte pointer which might be
* NULL. The bytes referenced by this pointer must not be modified by the
* caller. The ANSI C "prototype" for this macro is:
*
* MODULE_SCOPE char * TclGetString(Tcl_Obj *objPtr);
*----------------------------------------------------------------
*/
#define TclGetString(objPtr) \
((objPtr)->bytes? (objPtr)->bytes : Tcl_GetString((objPtr)))
#define TclGetStringFromObj(objPtr, lenPtr) \
((objPtr)->bytes \
? (*(lenPtr) = (objPtr)->length, (objPtr)->bytes) \
: Tcl_GetStringFromObj((objPtr), (lenPtr)))
/*
*----------------------------------------------------------------
* Macro used by the Tcl core to clean out an object's internal
* representation. Does not actually reset the rep's bytes. The ANSI C
* "prototype" for this macro is:
*
* MODULE_SCOPE void TclFreeIntRep(Tcl_Obj *objPtr);
*----------------------------------------------------------------
*/
#define TclFreeIntRep(objPtr) \
if ((objPtr)->typePtr != NULL && \
(objPtr)->typePtr->freeIntRepProc != NULL) { \
(objPtr)->typePtr->freeIntRepProc(objPtr); \
}
/*
*----------------------------------------------------------------
* Macro used by the Tcl core to clean out an object's string representation.
* The ANSI C "prototype" for this macro is:
*
* MODULE_SCOPE void TclInvalidateStringRep(Tcl_Obj *objPtr);
*----------------------------------------------------------------
*/
#define TclInvalidateStringRep(objPtr) \
if (objPtr->bytes != NULL) { \
if (objPtr->bytes != tclEmptyStringRep) { \
ckfree((char *) objPtr->bytes); \
} \
objPtr->bytes = NULL; \
}
/*
*----------------------------------------------------------------
* Macros used by the Tcl core to grow Tcl_Token arrays. They use the same
* growth algorithm as used in tclStringObj.c for growing strings. The ANSI C
* "prototype" for this macro is:
*
* MODULE_SCOPE void TclGrowTokenArray(Tcl_Token *tokenPtr, int used,
* int available, int append,
* Tcl_Token *staticPtr);
* MODULE_SCOPE void TclGrowParseTokenArray(Tcl_Parse *parsePtr,
* int append);
*----------------------------------------------------------------
*/
#define TCL_MAX_TOKENS (int)(UINT_MAX / sizeof(Tcl_Token))
#define TCL_MIN_TOKEN_GROWTH 50
#define TclGrowTokenArray(tokenPtr, used, available, append, staticPtr) \
{ \
int needed = (used) + (append); \
if (needed > TCL_MAX_TOKENS) { \
Tcl_Panic("max # of tokens for a Tcl parse (%d) exceeded", \
TCL_MAX_TOKENS); \
} \
if (needed > (available)) { \
int allocated = 2 * needed; \
Tcl_Token *oldPtr = (tokenPtr); \
Tcl_Token *newPtr; \
if (oldPtr == (staticPtr)) { \
oldPtr = NULL; \
} \
if (allocated > TCL_MAX_TOKENS) { \
allocated = TCL_MAX_TOKENS; \
} \
newPtr = (Tcl_Token *) attemptckrealloc((char *) oldPtr, \
(unsigned int) (allocated * sizeof(Tcl_Token))); \
if (newPtr == NULL) { \
allocated = needed + (append) + TCL_MIN_TOKEN_GROWTH; \
if (allocated > TCL_MAX_TOKENS) { \
allocated = TCL_MAX_TOKENS; \
} \
newPtr = (Tcl_Token *) ckrealloc((char *) oldPtr, \
(unsigned int) (allocated * sizeof(Tcl_Token))); \
} \
(available) = allocated; \
if (oldPtr == NULL) { \
memcpy((VOID *) newPtr, (VOID *) staticPtr, \
(size_t) ((used) * sizeof(Tcl_Token))); \
} \
(tokenPtr) = newPtr; \
} \
}
#define TclGrowParseTokenArray(parsePtr, append) \
TclGrowTokenArray((parsePtr)->tokenPtr, (parsePtr)->numTokens, \
(parsePtr)->tokensAvailable, (append), \
(parsePtr)->staticTokens)
/*
*----------------------------------------------------------------
* Macro used by the Tcl core get a unicode char from a utf string. It checks
* to see if we have a one-byte utf char before calling the real
* Tcl_UtfToUniChar, as this will save a lot of time for primarily ASCII
* string handling. The macro's expression result is 1 for the 1-byte case or
* the result of Tcl_UtfToUniChar. The ANSI C "prototype" for this macro is:
*
* MODULE_SCOPE int TclUtfToUniChar(const char *string, Tcl_UniChar *ch);
*----------------------------------------------------------------
*/
#define TclUtfToUniChar(str, chPtr) \
((((unsigned char) *(str)) < 0xC0) ? \
((*(chPtr) = (Tcl_UniChar) *(str)), 1) \
: Tcl_UtfToUniChar(str, chPtr))
/*
*----------------------------------------------------------------
* Macro used by the Tcl core to compare Unicode strings. On big-endian
* systems we can use the more efficient memcmp, but this would not be
* lexically correct on little-endian systems. The ANSI C "prototype" for
* this macro is:
*
* MODULE_SCOPE int TclUniCharNcmp(const Tcl_UniChar *cs,
* const Tcl_UniChar *ct, unsigned long n);
*----------------------------------------------------------------
*/
#ifdef WORDS_BIGENDIAN
# define TclUniCharNcmp(cs,ct,n) memcmp((cs),(ct),(n)*sizeof(Tcl_UniChar))
#else /* !WORDS_BIGENDIAN */
# define TclUniCharNcmp Tcl_UniCharNcmp
#endif /* WORDS_BIGENDIAN */
/*
*----------------------------------------------------------------
* Macro used by the Tcl core to increment a namespace's export export epoch
* counter. The ANSI C "prototype" for this macro is:
*
* MODULE_SCOPE void TclInvalidateNsCmdLookup(Namespace *nsPtr);
*----------------------------------------------------------------
*/
#define TclInvalidateNsCmdLookup(nsPtr) \
if ((nsPtr)->numExportPatterns) { \
(nsPtr)->exportLookupEpoch++; \
}
/*
*----------------------------------------------------------------------
*
* Core procedures added to libtommath for bignum manipulation.
*
*----------------------------------------------------------------------
*/
MODULE_SCOPE int TclTommath_Init(Tcl_Interp *interp);
MODULE_SCOPE void TclBNInitBignumFromLong(mp_int *bignum, long initVal);
MODULE_SCOPE void TclBNInitBignumFromWideInt(mp_int *bignum,
Tcl_WideInt initVal);
MODULE_SCOPE void TclBNInitBignumFromWideUInt(mp_int *bignum,
Tcl_WideUInt initVal);
/*
*----------------------------------------------------------------
* Macro used by the Tcl core to check whether a pattern has any characters
* special to [string match]. The ANSI C "prototype" for this macro is:
*
* MODULE_SCOPE int TclMatchIsTrivial(const char *pattern);
*----------------------------------------------------------------
*/
#define TclMatchIsTrivial(pattern) strpbrk((pattern), "*[?\\") == NULL
/*
*----------------------------------------------------------------
* Macro used by the Tcl core to write the string rep of a long integer to a
* character buffer. The ANSI C "prototype" for this macro is:
*
* MODULE_SCOPE int TclFormatInt(char *buf, long n);
*----------------------------------------------------------------
*/
#define TclFormatInt(buf, n) sprintf((buf), "%ld", (long)(n))
/*
*----------------------------------------------------------------
* Macros used by the Tcl core to set a Tcl_Obj's numeric representation
* avoiding the corresponding function calls in time critical parts of the
* core. They should only be called on unshared objects. The ANSI C
* "prototypes" for these macros are:
*
* MODULE_SCOPE void TclSetIntObj(Tcl_Obj *objPtr, int intValue);
* MODULE_SCOPE void TclSetLongObj(Tcl_Obj *objPtr, long longValue);
* MODULE_SCOPE void TclSetBooleanObj(Tcl_Obj *objPtr, long boolValue);
* MODULE_SCOPE void TclSetWideIntObj(Tcl_Obj *objPtr, Tcl_WideInt w);
* MODULE_SCOPE void TclSetDoubleObj(Tcl_Obj *objPtr, double d);
*----------------------------------------------------------------
*/
#define TclSetIntObj(objPtr, i) \
TclInvalidateStringRep(objPtr);\
TclFreeIntRep(objPtr); \
(objPtr)->internalRep.longValue = (long)(i); \
(objPtr)->typePtr = &tclIntType
#define TclSetLongObj(objPtr, l) \
TclSetIntObj((objPtr), (l))
/*
* NOTE: There is to be no such thing as a "pure" boolean. Boolean values set
* programmatically go straight to being "int" Tcl_Obj's, with value 0 or 1.
* The only "boolean" Tcl_Obj's shall be those holding the cached boolean
* value of strings like: "yes", "no", "true", "false", "on", "off".
*/
#define TclSetBooleanObj(objPtr, b) \
TclSetIntObj((objPtr), ((b)? 1 : 0));
#ifndef NO_WIDE_TYPE
#define TclSetWideIntObj(objPtr, w) \
TclInvalidateStringRep(objPtr);\
TclFreeIntRep(objPtr); \
(objPtr)->internalRep.wideValue = (Tcl_WideInt)(w); \
(objPtr)->typePtr = &tclWideIntType
#endif
#define TclSetDoubleObj(objPtr, d) \
TclInvalidateStringRep(objPtr);\
TclFreeIntRep(objPtr); \
(objPtr)->internalRep.doubleValue = (double)(d); \
(objPtr)->typePtr = &tclDoubleType
/*
*----------------------------------------------------------------
* Macros used by the Tcl core to create and initialise objects of standard
* types, avoiding the corresponding function calls in time critical parts of
* the core. The ANSI C "prototypes" for these macros are:
*
* MODULE_SCOPE void TclNewIntObj(Tcl_Obj *objPtr, int i);
* MODULE_SCOPE void TclNewLongObj(Tcl_Obj *objPtr, long l);
* MODULE_SCOPE void TclNewBooleanObj(Tcl_Obj *objPtr, int b);
* MODULE_SCOPE void TclNewWideObj(Tcl_Obj *objPtr, Tcl_WideInt w);
* MODULE_SCOPE void TclNewDoubleObj(Tcl_Obj *objPtr, double d);
* MODULE_SCOPE void TclNewStringObj(Tcl_Obj *objPtr, char *s, int len);
* MODULE_SCOPE void TclNewLiteralStringObj(Tcl_Obj*objPtr, char*sLiteral);
*
*----------------------------------------------------------------
*/
#ifndef TCL_MEM_DEBUG
#define TclNewIntObj(objPtr, i) \
TclIncrObjsAllocated(); \
TclAllocObjStorage(objPtr); \
(objPtr)->refCount = 0; \
(objPtr)->bytes = NULL; \
(objPtr)->internalRep.longValue = (long)(i); \
(objPtr)->typePtr = &tclIntType; \
TCL_DTRACE_OBJ_CREATE(objPtr)
#define TclNewLongObj(objPtr, l) \
TclNewIntObj((objPtr), (l))
/*
* NOTE: There is to be no such thing as a "pure" boolean.
* See comment above TclSetBooleanObj macro above.
*/
#define TclNewBooleanObj(objPtr, b) \
TclNewIntObj((objPtr), ((b)? 1 : 0))
#define TclNewDoubleObj(objPtr, d) \
TclIncrObjsAllocated(); \
TclAllocObjStorage(objPtr); \
(objPtr)->refCount = 0; \
(objPtr)->bytes = NULL; \
(objPtr)->internalRep.doubleValue = (double)(d); \
(objPtr)->typePtr = &tclDoubleType; \
TCL_DTRACE_OBJ_CREATE(objPtr)
#define TclNewStringObj(objPtr, s, len) \
TclIncrObjsAllocated(); \
TclAllocObjStorage(objPtr); \
(objPtr)->refCount = 0; \
TclInitStringRep((objPtr), (s), (len));\
(objPtr)->typePtr = NULL; \
TCL_DTRACE_OBJ_CREATE(objPtr)
#else /* TCL_MEM_DEBUG */
#define TclNewIntObj(objPtr, i) \
(objPtr) = Tcl_NewIntObj(i)
#define TclNewLongObj(objPtr, l) \
(objPtr) = Tcl_NewLongObj(l)
#define TclNewBooleanObj(objPtr, b) \
(objPtr) = Tcl_NewBooleanObj(b)
#define TclNewDoubleObj(objPtr, d) \
(objPtr) = Tcl_NewDoubleObj(d)
#define TclNewStringObj(objPtr, s, len) \
(objPtr) = Tcl_NewStringObj((s), (len))
#endif /* TCL_MEM_DEBUG */
/*
* The sLiteral argument *must* be a string literal; the incantation with
* sizeof(sLiteral "") will fail to compile otherwise.
*/
#define TclNewLiteralStringObj(objPtr, sLiteral) \
TclNewStringObj((objPtr), (sLiteral), (int) (sizeof(sLiteral "") - 1))
/*
*----------------------------------------------------------------
* Macros used by the Tcl core to test for some special double values.
* The ANSI C "prototypes" for these macros are:
*
* MODULE_SCOPE int TclIsInfinite(double d);
* MODULE_SCOPE int TclIsNaN(double d);
*/
#ifdef _MSC_VER
# define TclIsInfinite(d) (!(_finite((d))))
# define TclIsNaN(d) (_isnan((d)))
#else
# define TclIsInfinite(d) ((d) > DBL_MAX || (d) < -DBL_MAX)
# ifdef NO_ISNAN
# define TclIsNaN(d) ((d) != (d))
# else
# define TclIsNaN(d) (isnan(d))
# endif
#endif
/*
* ----------------------------------------------------------------------
* Macro to use to find the offset of a field in a structure. Computes number
* of bytes from beginning of structure to a given field.
*/
#ifdef offsetof
#define TclOffset(type, field) ((int) offsetof(type, field))
#else
#define TclOffset(type, field) ((int) ((char *) &((type *) 0)->field))
#endif
/*
*----------------------------------------------------------------
* Inline version of Tcl_GetCurrentNamespace and Tcl_GetGlobalNamespace.
*/
#define TclGetCurrentNamespace(interp) \
(Tcl_Namespace *) ((Interp *)(interp))->varFramePtr->nsPtr
#define TclGetGlobalNamespace(interp) \
(Tcl_Namespace *) ((Interp *)(interp))->globalNsPtr
/*
*----------------------------------------------------------------
* Inline version of TclCleanupCommand; still need the function as it is in
* the internal stubs, but the core can use the macro instead.
*/
#define TclCleanupCommandMacro(cmdPtr) \
if (--(cmdPtr)->refCount <= 0) { \
ckfree((char *) (cmdPtr));\
}
/*
*----------------------------------------------------------------
* Inline versions of Tcl_LimitReady() and Tcl_LimitExceeded to limit number
* of calls out of the critical path. Note that this code isn't particularly
* readable; the non-inline version (in tclInterp.c) is much easier to
* understand. Note also that these macros takes different args (iPtr->limit)
* to the non-inline version.
*/
#define TclLimitExceeded(limit) ((limit).exceeded != 0)
#define TclLimitReady(limit) \
(((limit).active == 0) ? 0 : \
(++(limit).granularityTicker, \
((((limit).active & TCL_LIMIT_COMMANDS) && \
(((limit).cmdGranularity == 1) || \
((limit).granularityTicker % (limit).cmdGranularity == 0))) \
? 1 : \
(((limit).active & TCL_LIMIT_TIME) && \
(((limit).timeGranularity == 1) || \
((limit).granularityTicker % (limit).timeGranularity == 0)))\
? 1 : 0)))
#include "tclIntDecls.h"
#include "tclIntPlatDecls.h"
#include "tclTomMathDecls.h"
#endif /* _TCLINT */
/*
* Local Variables:
* mode: c
* c-basic-offset: 4
* fill-column: 78
* End:
*/
|