#!./perl
#
# Regression tests for the Math::Trig package
#
# The tests are quite modest as the Math::Complex tests exercise
# these quite vigorously.
#
# -- Jarkko Hietaniemi, April 1997
BEGIN {
chdir 't' if -d 't';
@INC = '../lib';
}
use Math::Trig;
use strict;
use vars qw($x $y $z);
my $eps = 1e-11;
if ($^O eq 'unicos') { # See lib/Math/Complex.pm and t/lib/complex.t.
$eps = 1e-10;
}
sub near ($$;$) {
my $e = defined $_[2] ? $_[2] : $eps;
$_[1] ? (abs($_[0]/$_[1] - 1) < $e) : abs($_[0]) < $e;
}
print "1..26\n";
$x = 0.9;
print 'not ' unless (near(tan($x), sin($x) / cos($x)));
print "ok 1\n";
print 'not ' unless (near(sinh(2), 3.62686040784702));
print "ok 2\n";
print 'not ' unless (near(acsch(0.1), 2.99822295029797));
print "ok 3\n";
$x = asin(2);
print 'not ' unless (ref $x eq 'Math::Complex');
print "ok 4\n";
# avoid using Math::Complex here
$x =~ /^([^-]+)(-[^i]+)i$/;
($y, $z) = ($1, $2);
print 'not ' unless (near($y, 1.5707963267949) and
near($z, -1.31695789692482));
print "ok 5\n";
print 'not ' unless (near(deg2rad(90), pi/2));
print "ok 6\n";
print 'not ' unless (near(rad2deg(pi), 180));
print "ok 7\n";
use Math::Trig ':radial';
{
my ($r,$t,$z) = cartesian_to_cylindrical(1,1,1);
print 'not ' unless (near($r, sqrt(2))) and
(near($t, deg2rad(45))) and
(near($z, 1));
print "ok 8\n";
($x,$y,$z) = cylindrical_to_cartesian($r, $t, $z);
print 'not ' unless (near($x, 1)) and
(near($y, 1)) and
(near($z, 1));
print "ok 9\n";
($r,$t,$z) = cartesian_to_cylindrical(1,1,0);
print 'not ' unless (near($r, sqrt(2))) and
(near($t, deg2rad(45))) and
(near($z, 0));
print "ok 10\n";
($x,$y,$z) = cylindrical_to_cartesian($r, $t, $z);
print 'not ' unless (near($x, 1)) and
(near($y, 1)) and
(near($z, 0));
print "ok 11\n";
}
{
my ($r,$t,$f) = cartesian_to_spherical(1,1,1);
print 'not ' unless (near($r, sqrt(3))) and
(near($t, deg2rad(45))) and
(near($f, atan2(sqrt(2), 1)));
print "ok 12\n";
($x,$y,$z) = spherical_to_cartesian($r, $t, $f);
print 'not ' unless (near($x, 1)) and
(near($y, 1)) and
(near($z, 1));
print "ok 13\n";
($r,$t,$f) = cartesian_to_spherical(1,1,0);
print 'not ' unless (near($r, sqrt(2))) and
(near($t, deg2rad(45))) and
(near($f, deg2rad(90)));
print "ok 14\n";
($x,$y,$z) = spherical_to_cartesian($r, $t, $f);
print 'not ' unless (near($x, 1)) and
(near($y, 1)) and
(near($z, 0));
print "ok 15\n";
}
{
my ($r,$t,$z) = cylindrical_to_spherical(spherical_to_cylindrical(1,1,1));
print 'not ' unless (near($r, 1)) and
(near($t, 1)) and
(near($z, 1));
print "ok 16\n";
($r,$t,$z) = spherical_to_cylindrical(cylindrical_to_spherical(1,1,1));
print 'not ' unless (near($r, 1)) and
(near($t, 1)) and
(near($z, 1));
print "ok 17\n";
}
{
use Math::Trig 'great_circle_distance';
print 'not '
unless (near(great_circle_distance(0, 0, 0, pi/2), pi/2));
print "ok 18\n";
print 'not '
unless (near(great_circle_distance(0, 0, pi, pi), pi));
print "ok 19\n";
# London to Tokyo.
my @L = (deg2rad(-0.5), deg2rad(90 - 51.3));
my @T = (deg2rad(139.8),deg2rad(90 - 35.7));
my $km = great_circle_distance(@L, @T, 6378);
print 'not ' unless (near($km, 9605.26637021388));
print "ok 20\n";
}
{
my $R2D = 57.295779513082320876798154814169;
sub frac { $_[0] - int($_[0]) }
my $lotta_radians = deg2rad(1E+20, 1);
print "not " unless near($lotta_radians, 1E+20/$R2D);
print "ok 21\n";
my $negat_degrees = rad2deg(-1E20, 1);
print "not " unless near($negat_degrees, -1E+20*$R2D);
print "ok 22\n";
my $posit_degrees = rad2deg(-10000, 1);
print "not " unless near($posit_degrees, -10000*$R2D);
print "ok 23\n";
}
{
use Math::Trig 'great_circle_direction';
print 'not '
unless (near(great_circle_direction(0, 0, 0, pi/2), pi));
print "ok 24\n";
# Retired test: Relies on atan(0, 0), which is not portable.
# print 'not '
# unless (near(great_circle_direction(0, 0, pi, pi), -pi()/2));
print "ok 25\n";
# London to Tokyo.
my @L = (deg2rad(-0.5), deg2rad(90 - 51.3));
my @T = (deg2rad(139.8),deg2rad(90 - 35.7));
my $rad = great_circle_direction(@L, @T);
print 'not ' unless (near($rad, -0.546644569997376));
print "ok 26\n";
}
# eof
|