#!./perl
#
# test the conversion operators
#
# Notations:
#
# "N p i N vs N N": Apply op-N, then op-p, then op-i, then reporter-N
# Compare with application of op-N, then reporter-N
# Right below are descriptions of different ops and reporters.
# We do not use these subroutines any more, sub overhead makes a "switch"
# solution better:
# obviously, 0, 1 and 2, 3 are destructive. (XXXX 64-bit? 4 destructive too)
# *0 = sub {--$_[0]}; # -
# *1 = sub {++$_[0]}; # +
# # Converters
# *2 = sub { $_[0] = $max_uv & $_[0]}; # U
# *3 = sub { use integer; $_[0] += $zero}; # I
# *4 = sub { $_[0] += $zero}; # N
# *5 = sub { $_[0] = "$_[0]" }; # P
# # Side effects
# *6 = sub { $max_uv & $_[0]}; # u
# *7 = sub { use integer; $_[0] + $zero}; # i
# *8 = sub { $_[0] + $zero}; # n
# *9 = sub { $_[0] . "" }; # p
# # Reporters
# sub a2 { sprintf "%u", $_[0] } # U
# sub a3 { sprintf "%d", $_[0] } # I
# sub a4 { sprintf "%g", $_[0] } # N
# sub a5 { "$_[0]" } # P
BEGIN {
chdir 't' if -d 't';
@INC = '../lib';
}
use strict 'vars';
my $max_chain = $ENV{PERL_TEST_NUMCONVERTS} || 2;
# Bulk out if unsigned type is hopelessly wrong:
my $max_uv1 = ~0;
my $max_uv2 = sprintf "%u", $max_uv1 ** 6; # 6 is an arbitrary number here
my $big_iv = do {use integer; $max_uv1 * 16}; # 16 is an arbitrary number here
my $max_uv_less3 = $max_uv1 - 3;
print "# max_uv1 = $max_uv1, max_uv2 = $max_uv2, big_iv = $big_iv\n";
print "# max_uv_less3 = $max_uv_less3\n";
if ($max_uv1 ne $max_uv2 or $big_iv > $max_uv1 or $max_uv1 == $max_uv_less3) {
print "1..0 # skipped: unsigned perl arithmetic is not sane";
eval { require Config; import Config };
use vars qw(%Config);
if ($Config{d_quad} eq 'define') {
print " (common in 64-bit platforms)";
}
print "\n";
exit 0;
}
if ($max_uv_less3 =~ tr/0-9//c) {
print "1..0 # skipped: this perl stringifies large unsigned integers using E notation\n";
exit 0;
}
my $st_t = 4*4; # We try 4 initializers and 4 reporters
my $num = 0;
$num += 10**$_ - 4**$_ for 1.. $max_chain;
$num *= $st_t;
print "1..$num\n"; # In fact 15 times more subsubtests...
my $max_uv = ~0;
my $max_iv = int($max_uv/2);
my $zero = 0;
my $l_uv = length $max_uv;
my $l_iv = length $max_iv;
# Hope: the first digits are good
my $larger_than_uv = substr 97 x 100, 0, $l_uv;
my $smaller_than_iv = substr 12 x 100, 0, $l_iv;
my $yet_smaller_than_iv = substr 97 x 100, 0, ($l_iv - 1);
my @list = (1, $yet_smaller_than_iv, $smaller_than_iv, $max_iv, $max_iv + 1,
$max_uv, $max_uv + 1);
unshift @list, (reverse map -$_, @list), 0; # 15 elts
@list = map "$_", @list; # Normalize
print "# @list\n";
# need to special case ++ for max_uv, as ++ "magic" on a string gives
# another string, whereas ++ magic on a string used as a number gives
# a number. Not a problem when NV preserves UV, but if it doesn't then
# stringification of the latter gives something in e notation.
my $max_uv_pp = "$max_uv"; $max_uv_pp++;
my $max_uv_p1 = "$max_uv"; $max_uv_p1+=0; $max_uv_p1++;
# Also need to cope with %g notation for max_uv_p1 that actually gives an
# integer less than max_uv because of correct rounding for the limited
# precisision. This bites for 12 byte long doubles and 8 byte UVs
my $temp = $max_uv_p1;
my $max_uv_p1_as_iv;
{use integer; $max_uv_p1_as_iv = 0 + sprintf "%s", $temp}
my $max_uv_p1_as_uv = 0 | sprintf "%s", $temp;
my @opnames = split //, "-+UINPuinp";
# @list = map { 2->($_), 3->($_), 4->($_), 5->($_), } @list; # Prepare input
#print "@list\n";
#print "'@ops'\n";
my $test = 1;
my $nok;
for my $num_chain (1..$max_chain) {
my @ops = map [split //], grep /[4-9]/,
map { sprintf "%0${num_chain}d", $_ } 0 .. 10**$num_chain - 1;
#@ops = ([]) unless $num_chain;
#@ops = ([6, 4]);
# print "'@ops'\n";
for my $op (@ops) {
for my $first (2..5) {
for my $last (2..5) {
$nok = 0;
my @otherops = grep $_ <= 3, @$op;
my @curops = ($op,\@otherops);
for my $num (@list) {
my $inpt;
my @ans;
for my $short (0, 1) {
# undef $inpt; # Forget all we had - some bugs were masked
$inpt = $num; # Try to not contaminate $num...
$inpt = "$inpt";
if ($first == 2) {
$inpt = $max_uv & $inpt; # U 2
} elsif ($first == 3) {
use integer; $inpt += $zero; # I 3
} elsif ($first == 4) {
$inpt += $zero; # N 4
} else {
$inpt = "$inpt"; # P 5
}
# Saves 20% of time - not with this logic:
#my $tmp = $inpt;
#my $tmp1 = $num;
#next if $num_chain > 1
# and "$tmp" ne "$tmp1"; # Already the coercion gives problems...
for my $curop (@{$curops[$short]}) {
if ($curop < 5) {
if ($curop < 3) {
if ($curop == 0) {
--$inpt; # - 0
} elsif ($curop == 1) {
++$inpt; # + 1
} else {
$inpt = $max_uv & $inpt; # U 2
}
} elsif ($curop == 3) {
use integer; $inpt += $zero;
} else {
$inpt += $zero; # N 4
}
} elsif ($curop < 8) {
if ($curop == 5) {
$inpt = "$inpt"; # P 5
} elsif ($curop == 6) {
$max_uv & $inpt; # u 6
} else {
use integer; $inpt + $zero;
}
} elsif ($curop == 8) {
$inpt + $zero; # n 8
} else {
$inpt . ""; # p 9
}
}
if ($last == 2) {
$inpt = sprintf "%u", $inpt; # U 2
} elsif ($last == 3) {
$inpt = sprintf "%d", $inpt; # I 3
} elsif ($last == 4) {
$inpt = sprintf "%g", $inpt; # N 4
} else {
$inpt = "$inpt"; # P 5
}
push @ans, $inpt;
}
if ($ans[0] ne $ans[1]) {
print "# '$ans[0]' ne '$ans[1]',\t$num\t=> @opnames[$first,@{$curops[0]},$last] vs @opnames[$first,@{$curops[1]},$last]\n";
# XXX ought to check that "+" was in the list of opnames
if ((($ans[0] eq $max_uv_pp) and ($ans[1] eq $max_uv_p1))
or (($ans[1] eq $max_uv_pp) and ($ans[0] eq $max_uv_p1))) {
# string ++ versus numeric ++. Tolerate this little
# bit of insanity
print "# ok, as string ++ of max_uv is \"$max_uv_pp\", numeric is $max_uv_p1\n"
} elsif ($opnames[$last] eq 'I' and $ans[1] eq "-1"
and $ans[0] eq $max_uv_p1_as_iv) {
# Max UV plus 1 is NV. This NV may stringify in E notation.
# And the number of decimal digits shown in E notation will depend
# on the binary digits in the mantissa. And it may be that
# (say) 18446744073709551616 in E notation is truncated to
# (say) 1.8446744073709551e+19 (say) which gets converted back
# as 1.8446744073709551000e+19
# ie 18446744073709551000
# which isn't the integer we first had.
# But each step of conversion is correct. So it's not an error.
# (Only shows up for 64 bit UVs and NVs with 64 bit mantissas,
# and on Crays (64 bit integers, 48 bit mantissas) IIRC)
print "# ok, \"$max_uv_p1\" correctly converts to IV \"$max_uv_p1_as_iv\"\n";
} elsif ($opnames[$last] eq 'U' and $ans[1] eq ~0
and $ans[0] eq $max_uv_p1_as_uv) {
# as aboce
print "# ok, \"$max_uv_p1\" correctly converts to UV \"$max_uv_p1_as_uv\"\n";
} elsif (grep {/^N$/} @opnames[@{$curops[0]}]
and $ans[0] == $ans[1] and $ans[0] <= ~0
# First must be in E notation (ie not just digits) and
# second must still be an integer.
# eg 1.84467440737095516e+19
# 1.84467440737095516e+19 for 64 bit mantissa is in the
# integer range, so 1.84467440737095516e+19 + 0 is treated
# as integer addition. [should it be?]
# and 18446744073709551600 + 0 is 18446744073709551600
# Which isn't the string you first thought of.
# I can't remember why there isn't symmetry in this
# exception, ie why only the first ops are tested for 'N'
and $ans[0] != /^-?\d+$/ and $ans[1] !~ /^-?\d+$/) {
print "# ok, numerically equal - notation changed due to adding zero\n";
} else {
$nok++,
}
}
}
if ($nok) {
print "not ok $test\n";
} else {
print "ok $test\n";
}
#print $txt if $nok;
$test++;
}
}
}
}
|