Plan 9 from Bell Labs’s /usr/web/sources/contrib/stallion/root/arm/go/src/crypto/ecdsa/ecdsa.go

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
// defined in FIPS 186-3.
//
// This implementation  derives the nonce from an AES-CTR CSPRNG keyed by
// ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by
// a result of Coron; the AES-CTR stream is IRO under standard assumptions.
package ecdsa

// References:
//   [NSA]: Suite B implementer's guide to FIPS 186-3,
//     https://apps.nsa.gov/iaarchive/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/suite-b-implementers-guide-to-fips-186-3-ecdsa.cfm
//   [SECG]: SECG, SEC1
//     http://www.secg.org/sec1-v2.pdf

import (
	"crypto"
	"crypto/aes"
	"crypto/cipher"
	"crypto/elliptic"
	"crypto/internal/randutil"
	"crypto/sha512"
	"encoding/asn1"
	"errors"
	"io"
	"math/big"
)

// A invertible implements fast inverse mod Curve.Params().N
type invertible interface {
	// Inverse returns the inverse of k in GF(P)
	Inverse(k *big.Int) *big.Int
}

// combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point)
type combinedMult interface {
	CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int)
}

const (
	aesIV = "IV for ECDSA CTR"
)

// PublicKey represents an ECDSA public key.
type PublicKey struct {
	elliptic.Curve
	X, Y *big.Int
}

// PrivateKey represents an ECDSA private key.
type PrivateKey struct {
	PublicKey
	D *big.Int
}

type ecdsaSignature struct {
	R, S *big.Int
}

// Public returns the public key corresponding to priv.
func (priv *PrivateKey) Public() crypto.PublicKey {
	return &priv.PublicKey
}

// Sign signs digest with priv, reading randomness from rand. The opts argument
// is not currently used but, in keeping with the crypto.Signer interface,
// should be the hash function used to digest the message.
//
// This method implements crypto.Signer, which is an interface to support keys
// where the private part is kept in, for example, a hardware module. Common
// uses should use the Sign function in this package directly.
func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
	r, s, err := Sign(rand, priv, digest)
	if err != nil {
		return nil, err
	}

	return asn1.Marshal(ecdsaSignature{r, s})
}

var one = new(big.Int).SetInt64(1)

// randFieldElement returns a random element of the field underlying the given
// curve using the procedure given in [NSA] A.2.1.
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
	params := c.Params()
	b := make([]byte, params.BitSize/8+8)
	_, err = io.ReadFull(rand, b)
	if err != nil {
		return
	}

	k = new(big.Int).SetBytes(b)
	n := new(big.Int).Sub(params.N, one)
	k.Mod(k, n)
	k.Add(k, one)
	return
}

// GenerateKey generates a public and private key pair.
func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
	k, err := randFieldElement(c, rand)
	if err != nil {
		return nil, err
	}

	priv := new(PrivateKey)
	priv.PublicKey.Curve = c
	priv.D = k
	priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
	return priv, nil
}

// hashToInt converts a hash value to an integer. There is some disagreement
// about how this is done. [NSA] suggests that this is done in the obvious
// manner, but [SECG] truncates the hash to the bit-length of the curve order
// first. We follow [SECG] because that's what OpenSSL does. Additionally,
// OpenSSL right shifts excess bits from the number if the hash is too large
// and we mirror that too.
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
	orderBits := c.Params().N.BitLen()
	orderBytes := (orderBits + 7) / 8
	if len(hash) > orderBytes {
		hash = hash[:orderBytes]
	}

	ret := new(big.Int).SetBytes(hash)
	excess := len(hash)*8 - orderBits
	if excess > 0 {
		ret.Rsh(ret, uint(excess))
	}
	return ret
}

// fermatInverse calculates the inverse of k in GF(P) using Fermat's method.
// This has better constant-time properties than Euclid's method (implemented
// in math/big.Int.ModInverse) although math/big itself isn't strictly
// constant-time so it's not perfect.
func fermatInverse(k, N *big.Int) *big.Int {
	two := big.NewInt(2)
	nMinus2 := new(big.Int).Sub(N, two)
	return new(big.Int).Exp(k, nMinus2, N)
}

var errZeroParam = errors.New("zero parameter")

// Sign signs a hash (which should be the result of hashing a larger message)
// using the private key, priv. If the hash is longer than the bit-length of the
// private key's curve order, the hash will be truncated to that length.  It
// returns the signature as a pair of integers. The security of the private key
// depends on the entropy of rand.
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
	randutil.MaybeReadByte(rand)

	// Get min(log2(q) / 2, 256) bits of entropy from rand.
	entropylen := (priv.Curve.Params().BitSize + 7) / 16
	if entropylen > 32 {
		entropylen = 32
	}
	entropy := make([]byte, entropylen)
	_, err = io.ReadFull(rand, entropy)
	if err != nil {
		return
	}

	// Initialize an SHA-512 hash context; digest ...
	md := sha512.New()
	md.Write(priv.D.Bytes()) // the private key,
	md.Write(entropy)        // the entropy,
	md.Write(hash)           // and the input hash;
	key := md.Sum(nil)[:32]  // and compute ChopMD-256(SHA-512),
	// which is an indifferentiable MAC.

	// Create an AES-CTR instance to use as a CSPRNG.
	block, err := aes.NewCipher(key)
	if err != nil {
		return nil, nil, err
	}

	// Create a CSPRNG that xors a stream of zeros with
	// the output of the AES-CTR instance.
	csprng := cipher.StreamReader{
		R: zeroReader,
		S: cipher.NewCTR(block, []byte(aesIV)),
	}

	// See [NSA] 3.4.1
	c := priv.PublicKey.Curve
	N := c.Params().N
	if N.Sign() == 0 {
		return nil, nil, errZeroParam
	}
	var k, kInv *big.Int
	for {
		for {
			k, err = randFieldElement(c, csprng)
			if err != nil {
				r = nil
				return
			}

			if in, ok := priv.Curve.(invertible); ok {
				kInv = in.Inverse(k)
			} else {
				kInv = fermatInverse(k, N) // N != 0
			}

			r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
			r.Mod(r, N)
			if r.Sign() != 0 {
				break
			}
		}

		e := hashToInt(hash, c)
		s = new(big.Int).Mul(priv.D, r)
		s.Add(s, e)
		s.Mul(s, kInv)
		s.Mod(s, N) // N != 0
		if s.Sign() != 0 {
			break
		}
	}

	return
}

// Verify verifies the signature in r, s of hash using the public key, pub. Its
// return value records whether the signature is valid.
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
	// See [NSA] 3.4.2
	c := pub.Curve
	N := c.Params().N

	if r.Sign() <= 0 || s.Sign() <= 0 {
		return false
	}
	if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
		return false
	}
	e := hashToInt(hash, c)

	var w *big.Int
	if in, ok := c.(invertible); ok {
		w = in.Inverse(s)
	} else {
		w = new(big.Int).ModInverse(s, N)
	}

	u1 := e.Mul(e, w)
	u1.Mod(u1, N)
	u2 := w.Mul(r, w)
	u2.Mod(u2, N)

	// Check if implements S1*g + S2*p
	var x, y *big.Int
	if opt, ok := c.(combinedMult); ok {
		x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes())
	} else {
		x1, y1 := c.ScalarBaseMult(u1.Bytes())
		x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
		x, y = c.Add(x1, y1, x2, y2)
	}

	if x.Sign() == 0 && y.Sign() == 0 {
		return false
	}
	x.Mod(x, N)
	return x.Cmp(r) == 0
}

type zr struct {
	io.Reader
}

// Read replaces the contents of dst with zeros.
func (z *zr) Read(dst []byte) (n int, err error) {
	for i := range dst {
		dst[i] = 0
	}
	return len(dst), nil
}

var zeroReader = &zr{}

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to [email protected].