Plan 9 from Bell Labs’s /usr/web/sources/contrib/stallion/root/arm/go/src/internal/bytealg/indexbyte_arm64.s

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "textflag.h"

TEXT ·IndexByte(SB),NOSPLIT,$0-40
	MOVD	b_base+0(FP), R0
	MOVD	b_len+8(FP), R2
	MOVBU	c+24(FP), R1
	MOVD	$ret+32(FP), R8
	B	indexbytebody<>(SB)

TEXT ·IndexByteString(SB),NOSPLIT,$0-32
	MOVD	s_base+0(FP), R0
	MOVD	s_len+8(FP), R2
	MOVBU	c+16(FP), R1
	MOVD	$ret+24(FP), R8
	B	indexbytebody<>(SB)

// input:
//   R0: data
//   R1: byte to search
//   R2: data len
//   R8: address to put result
TEXT indexbytebody<>(SB),NOSPLIT,$0
	// Core algorithm:
	// For each 32-byte chunk we calculate a 64-bit syndrome value,
	// with two bits per byte. For each tuple, bit 0 is set if the
	// relevant byte matched the requested character and bit 1 is
	// not used (faster than using a 32bit syndrome). Since the bits
	// in the syndrome reflect exactly the order in which things occur
	// in the original string, counting trailing zeros allows to
	// identify exactly which byte has matched.

	CBZ	R2, fail
	MOVD	R0, R11
	// Magic constant 0x40100401 allows us to identify
	// which lane matches the requested byte.
	// 0x40100401 = ((1<<0) + (4<<8) + (16<<16) + (64<<24))
	// Different bytes have different bit masks (i.e: 1, 4, 16, 64)
	MOVD	$0x40100401, R5
	VMOV	R1, V0.B16
	// Work with aligned 32-byte chunks
	BIC	$0x1f, R0, R3
	VMOV	R5, V5.S4
	ANDS	$0x1f, R0, R9
	AND	$0x1f, R2, R10
	BEQ	loop

	// Input string is not 32-byte aligned. We calculate the
	// syndrome value for the aligned 32 bytes block containing
	// the first bytes and mask off the irrelevant part.
	VLD1.P	(R3), [V1.B16, V2.B16]
	SUB	$0x20, R9, R4
	ADDS	R4, R2, R2
	VCMEQ	V0.B16, V1.B16, V3.B16
	VCMEQ	V0.B16, V2.B16, V4.B16
	VAND	V5.B16, V3.B16, V3.B16
	VAND	V5.B16, V4.B16, V4.B16
	VADDP	V4.B16, V3.B16, V6.B16 // 256->128
	VADDP	V6.B16, V6.B16, V6.B16 // 128->64
	VMOV	V6.D[0], R6
	// Clear the irrelevant lower bits
	LSL	$1, R9, R4
	LSR	R4, R6, R6
	LSL	R4, R6, R6
	// The first block can also be the last
	BLS	masklast
	// Have we found something already?
	CBNZ	R6, tail

loop:
	VLD1.P	(R3), [V1.B16, V2.B16]
	SUBS	$0x20, R2, R2
	VCMEQ	V0.B16, V1.B16, V3.B16
	VCMEQ	V0.B16, V2.B16, V4.B16
	// If we're out of data we finish regardless of the result
	BLS	end
	// Use a fast check for the termination condition
	VORR	V4.B16, V3.B16, V6.B16
	VADDP	V6.D2, V6.D2, V6.D2
	VMOV	V6.D[0], R6
	// We're not out of data, loop if we haven't found the character
	CBZ	R6, loop

end:
	// Termination condition found, let's calculate the syndrome value
	VAND	V5.B16, V3.B16, V3.B16
	VAND	V5.B16, V4.B16, V4.B16
	VADDP	V4.B16, V3.B16, V6.B16
	VADDP	V6.B16, V6.B16, V6.B16
	VMOV	V6.D[0], R6
	// Only do the clear for the last possible block with less than 32 bytes
	// Condition flags come from SUBS in the loop
	BHS	tail

masklast:
	// Clear the irrelevant upper bits
	ADD	R9, R10, R4
	AND	$0x1f, R4, R4
	SUB	$0x20, R4, R4
	NEG	R4<<1, R4
	LSL	R4, R6, R6
	LSR	R4, R6, R6

tail:
	// Check that we have found a character
	CBZ	R6, fail
	// Count the trailing zeros using bit reversing
	RBIT	R6, R6
	// Compensate the last post-increment
	SUB	$0x20, R3, R3
	// And count the leading zeros
	CLZ	R6, R6
	// R6 is twice the offset into the fragment
	ADD	R6>>1, R3, R0
	// Compute the offset result
	SUB	R11, R0, R0
	MOVD	R0, (R8)
	RET

fail:
	MOVD	$-1, R0
	MOVD	R0, (R8)
	RET

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to [email protected].