/*
This software may only be used by you under license from AT&T Corp.
("AT&T"). A copy of AT&T's Source Code Agreement is available at
AT&T's Internet website having the URL:
<http://www.research.att.com/sw/tools/graphviz/license/source.html>
If you received this software without first entering into a license
with AT&T, you have an infringing copy of this software and cannot use
it without violating AT&T's intellectual property rights.
*/
#pragma prototyped
/*
* build edge_t concentrators for parallel edges with a common endpoint
*/
#include "dot.h"
#define UP 0
#define DOWN 1
static boolean
samedir(edge_t *e,edge_t *f)
{
edge_t *e0,*f0;
for (e0 = e; ED_edge_type(e0) != NORMAL; e0 = ED_to_orig(e0));
for (f0 = f; ED_edge_type(f0) != NORMAL; f0 = ED_to_orig(f0));
if (ED_conc_opp_flag(e0)) return FALSE;
if (ED_conc_opp_flag(f0)) return FALSE;
return ((ND_rank(f0->tail) - ND_rank(f0->head))
*(ND_rank(e0->tail) - ND_rank(e0->head)) > 0);
}
boolean
downcandidate(node_t* v)
{
return ((ND_node_type(v) == VIRTUAL) && (ND_in(v).size == 1) && (ND_out(v).size == 1) &&(ND_label(v) == NULL));
}
boolean
bothdowncandidates(node_t *u, node_t *v)
{
edge_t *e,*f;
e = ND_in(u).list[0];
f = ND_in(v).list[0];
if (downcandidate(v) && (e->tail == f->tail)) {
return samedir(e,f) && (portcmp(ED_tail_port(e),ED_tail_port(f))==0);
}
return FALSE;
}
boolean
upcandidate(node_t* v)
{
return ((ND_node_type(v) == VIRTUAL) && (ND_out(v).size == 1) && (ND_in(v).size == 1) && (ND_label(v) == NULL));
}
boolean
bothupcandidates(node_t *u, node_t *v)
{
edge_t *e,*f;
e = ND_out(u).list[0];
f = ND_out(v).list[0];
if (upcandidate(v) && (e->head == f->head)) {
return samedir(e,f) && (portcmp(ED_head_port(e),ED_head_port(f))==0);
}
return FALSE;
}
void mergevirtual(graph_t *g, int r, int lpos, int rpos, int dir)
{
int i,k;
node_t *left,*right;
edge_t *e,*f,*e0;
left = GD_rank(g)[r].v[lpos];
/* merge all right nodes into the leftmost one */
for (i = lpos + 1; i <= rpos; i++) {
right = GD_rank(g)[r].v[i];
if (dir == DOWN) {
while ((e = ND_out(right).list[0])) {
for (k = 0; (f = ND_out(left).list[k]); k++)
if (f->head == e->head) break;
if (f == NULL) f = virtual_edge(left,e->head,e);
while ((e0 = ND_in(right).list[0])) {
merge_oneway(e0,f);
/*ED_weight(f) += ED_weight(e0);*/
delete_fast_edge(e0);
}
delete_fast_edge(e);
}
}
else {
while ((e = ND_in(right).list[0])) {
for (k = 0; (f = ND_in(left).list[k]); k++)
if (f->tail == e->tail) break;
if (f == NULL) f = virtual_edge(e->tail,left,e);
while ((e0 = ND_out(right).list[0])) {
merge_oneway(e0,f);
delete_fast_edge(e0);
}
delete_fast_edge(e);
}
}
assert(ND_in(right).size + ND_out(right).size == 0);
delete_fast_node(g,right);
}
k = lpos + 1;
i = rpos + 1;
while (i < GD_rank(g)[r].n) {
node_t *n;
n = GD_rank(g)[r].v[k] = GD_rank(g)[r].v[i];
ND_order(n) = k;
k++; i++;
}
GD_rank(g)[r].n = k;
GD_rank(g)[r].v[k] = NULL;
}
void dot_concentrate(graph_t* g)
{
int c,r,leftpos,rightpos;
node_t *left,*right;
if (GD_maxrank(g) - GD_minrank(g) <= 1) return;
/* this is the downward looking pass. r is a candidate rank. */
for (r = 1; GD_rank(g)[r+1].n; r++) {
for (leftpos = 0; leftpos < GD_rank(g)[r].n; leftpos++) {
left = GD_rank(g)[r].v[leftpos];
if (downcandidate(left) == FALSE) continue;
for (rightpos = leftpos + 1; rightpos < GD_rank(g)[r].n; rightpos++) {
right = GD_rank(g)[r].v[rightpos];
if (bothdowncandidates(left,right) == FALSE) break;
}
if (rightpos - leftpos > 1)
mergevirtual(g,r,leftpos,rightpos-1,DOWN);
}
}
/* this is the corresponding upward pass */
while (r > 0) {
for (leftpos = 0; leftpos < GD_rank(g)[r].n; leftpos++) {
left = GD_rank(g)[r].v[leftpos];
if (upcandidate(left) == FALSE) continue;
for (rightpos = leftpos + 1; rightpos < GD_rank(g)[r].n; rightpos++) {
right = GD_rank(g)[r].v[rightpos];
if (bothupcandidates(left,right) == FALSE) break;
}
if (rightpos - leftpos > 1)
mergevirtual(g,r,leftpos,rightpos-1,UP);
}
r--;
}
for (c = 1; c <= GD_n_cluster(g); c++)
rebuild_vlists(GD_clust(g)[c]);
}
void infuse(graph_t* g, node_t* n)
{
node_t *lead;
lead = GD_rankleader(g)[ND_rank(n)];
if ((lead == NULL) || (ND_order(lead) > ND_order(n)))
GD_rankleader(g)[ND_rank(n)] = n;
}
void rebuild_vlists(graph_t* g)
{
int c,i,r,maxi;
node_t *n,*lead;
edge_t *e,*rep;
for (r = GD_minrank(g); r <= GD_maxrank(g); r++)
GD_rankleader(g)[r] = NULL;
for (n = agfstnode(g); n; n = agnxtnode(g,n)) {
infuse(g,n);
for (e = agfstout(g,n); e; e = agnxtout(g,e)) {
for (rep = e; ED_to_virt(rep); rep = ED_to_virt(rep));
while (ND_rank(rep->head) < ND_rank(e->head)) {
infuse(g,rep->head);
rep = ND_out(rep->head).list[0];
}
}
}
for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
lead = GD_rankleader(g)[r];
if(ND_rank(g->root)[r].v[ND_order(lead)] != lead)
abort();
GD_rank(g)[r].v = ND_rank(g->root)[r].v + GD_rankleader(g)[r]->u.order;
maxi = -1;
for (i = 0; i < GD_rank(g)[r].n; i++) {
if ((n = GD_rank(g)[r].v[i]) == NULL) break;
if (ND_node_type(n) == NORMAL) {
if (agcontains(g,n)) maxi = i;
else break;
}
else {
edge_t *e;
for (e = ND_in(n).list[0]; e && ED_to_orig(e); e = ED_to_orig(e));
if (e && (agcontains(g,e->tail)) && agcontains(g,e->head))
maxi = i;
}
}
if (maxi == -1)
agerr(AGWARN, "degenerate concentrated rank %s,%d\n",g->name,r);
GD_rank(g)[r].n = maxi + 1;
}
for (c = 1; c <= GD_n_cluster(g); c++)
rebuild_vlists(GD_clust(g)[c]);
}
|