Plan 9 from Bell Labs’s /usr/web/sources/patch/applied/dist-cmd-warn/unbzip.c

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


#include <u.h>
#include <libc.h>
#include <bio.h>
#include "bzfs.h"

/*
 * THIS FILE IS NOT IDENTICAL TO THE ORIGINAL
 * FROM THE BZIP2 DISTRIBUTION.
 *
 * It has been modified, mainly to break the library
 * into smaller pieces.
 *
 * Russ Cox
 * [email protected]
 * July 2000
 */

/*---------------------------------------------*/
/*--
  Place a 1 beside your platform, and 0 elsewhere.
  Attempts to autosniff this even if you don't.
--*/


/*--
  Plan 9 from Bell Labs
--*/
#define BZ_PLAN9     1
#define BZ_UNIX 0

#define exit(x) exits((x) ? "whoops" : nil)
#define size_t ulong

#ifdef __GNUC__
#   define NORETURN __attribute__ ((noreturn))
#else
#   define NORETURN /**/
#endif

/*--
  Some more stuff for all platforms :-)
  This might have to get moved into the platform-specific
  header files if we encounter a machine with different sizes.
--*/

typedef char            Char;
typedef unsigned char   Bool;
typedef unsigned char   UChar;
typedef int             Int32;
typedef unsigned int    UInt32;
typedef short           Int16;
typedef unsigned short  UInt16;
                                       
#define True  ((Bool)1)
#define False ((Bool)0)

/*--
  IntNative is your platform's `native' int size.
  Only here to avoid probs with 64-bit platforms.
--*/
typedef int IntNative;

#include "bzfs.h"
#include "bzlib.h"
#include "bzlib_private.h"

static int
bunzip(int ofd, char *ofile, Biobuf *bin)
{
	int e, n, done, onemore;
	char buf[8192];
	char obuf[8192];
	Biobuf bout;
	bz_stream strm;

	USED(ofile);

	memset(&strm, 0, sizeof strm);
	BZ2_bzDecompressInit(&strm, 0, 0);

	strm.next_in = buf;
	strm.avail_in = 0;
	strm.next_out = obuf;
	strm.avail_out = sizeof obuf;

	done = 0;
	Binit(&bout, ofd, OWRITE);

	/*
	 * onemore is a crummy hack to go 'round the loop
	 * once after we finish, to flush the output buffer.
	 */
	onemore = 1;
	SET(e);
	do {
		if(!done && strm.avail_in < sizeof buf) {
			if(strm.avail_in)
				memmove(buf, strm.next_in, strm.avail_in);
			
			n = Bread(bin, buf+strm.avail_in, sizeof(buf)-strm.avail_in);
			if(n <= 0)
				done = 1;
			else
				strm.avail_in += n;
			strm.next_in = buf;
		}
		if(strm.avail_out < sizeof obuf) {
			Bwrite(&bout, obuf, sizeof(obuf)-strm.avail_out);
			strm.next_out = obuf;
			strm.avail_out = sizeof obuf;
		}

		if(onemore == 0)
			break;
	} while((e=BZ2_bzDecompress(&strm)) == BZ_OK || onemore--);

	if(e != BZ_STREAM_END) {
		fprint(2, "bunzip2: decompress failed\n");
		return 0;
	}

	if(BZ2_bzDecompressEnd(&strm) != BZ_OK) {
		fprint(2, "bunzip2: decompress end failed (can't happen)\n");
		return 0;
	}

	Bterm(&bout);

	return 1;
}

void
_unbzip(int in, int out)
{
	Biobuf bin;

	Binit(&bin, in, OREAD);
	if(bunzip(out, nil, &bin) != 1) {
		fprint(2, "bunzip2 failed\n");
		_exits("bunzip2");
	}
}

int
unbzip(int in)
{
	int rv, out, p[2];

	if(pipe(p) < 0)
		sysfatal("pipe: %r");

	rv = p[0];
	out = p[1];
	switch(rfork(RFPROC|RFFDG|RFNOTEG|RFMEM)){
	case -1:
		sysfatal("fork: %r");
	case 0:
		close(rv);
		break;
	default:
		close(in);
		close(out);
		return rv;
	}

	_unbzip(in, out);
	_exits(0);
	return -1;	/* not reached */
}

int bz_config_ok ( void )
{
   if (sizeof(int)   != 4) return 0;
   if (sizeof(short) != 2) return 0;
   if (sizeof(char)  != 1) return 0;
   return 1;
}

void* default_bzalloc(void *o, int items, int size)
{
	USED(o);
	return sbrk(items*size);
}

void default_bzfree(void*, void*)
{
}

void
bz_internal_error(int)
{
	abort();
}

/*-------------------------------------------------------------*/
/*--- Decompression machinery                               ---*/
/*---                                          decompress.c ---*/
/*-------------------------------------------------------------*/

/*--
  This file is a part of bzip2 and/or libbzip2, a program and
  library for lossless, block-sorting data compression.

  Copyright (C) 1996-2000 Julian R Seward.  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions
  are met:

  1. Redistributions of source code must retain the above copyright
     notice, this list of conditions and the following disclaimer.

  2. The origin of this software must not be misrepresented; you must 
     not claim that you wrote the original software.  If you use this 
     software in a product, an acknowledgment in the product 
     documentation would be appreciated but is not required.

  3. Altered source versions must be plainly marked as such, and must
     not be misrepresented as being the original software.

  4. The name of the author may not be used to endorse or promote 
     products derived from this software without specific prior written 
     permission.

  THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
  OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
  GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
  WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

  Julian Seward, Cambridge, UK.
  [email protected]
  bzip2/libbzip2 version 1.0 of 21 March 2000

  This program is based on (at least) the work of:
     Mike Burrows
     David Wheeler
     Peter Fenwick
     Alistair Moffat
     Radford Neal
     Ian H. Witten
     Robert Sedgewick
     Jon L. Bentley

  For more information on these sources, see the manual.
--*/



/*---------------------------------------------------*/
static
void makeMaps_d ( DState* s )
{
   Int32 i;
   s->nInUse = 0;
   for (i = 0; i < 256; i++)
      if (s->inUse[i]) {
         s->seqToUnseq[s->nInUse] = i;
         s->nInUse++;
      }
}


/*---------------------------------------------------*/
#define RETURN(rrr)                               \
   { retVal = rrr; goto save_state_and_return; };

#define GET_BITS(lll,vvv,nnn)                     \
	case lll: \
		{ int x; if((retVal = getbits(s, lll, &x, nnn)) != 99) \
			goto save_state_and_return; vvv=x; }\

int
getbits(DState *s, int lll, int *vvv, int nnn)
{
	s->state = lll;
	
	for(;;) {
		if (s->bsLive >= nnn) {
			UInt32 v;
			v = (s->bsBuff >>
				 (s->bsLive-nnn)) & ((1 << nnn)-1);
			s->bsLive -= nnn;
			*vvv = v;
			return 99;
		}
		if (s->strm->avail_in == 0) return BZ_OK;
		s->bsBuff
			= (s->bsBuff << 8) |
			  ((UInt32)
				  (*((UChar*)(s->strm->next_in))));
		s->bsLive += 8;
		s->strm->next_in++;
		s->strm->avail_in--;
		s->strm->total_in_lo32++;
		if (s->strm->total_in_lo32 == 0)
			s->strm->total_in_hi32++;
	}
}

#define GET_UCHAR(lll,uuu)                        \
   GET_BITS(lll,uuu,8)

#define GET_BIT(lll,uuu)                          \
   GET_BITS(lll,uuu,1)

/*---------------------------------------------------*/
#define GET_MTF_VAL(label1,label2,lval)           \
{                                                 \
   if (groupPos == 0) {                           \
      groupNo++;                                  \
      if (groupNo >= nSelectors)                  \
         RETURN(BZ_DATA_ERROR);                   \
      groupPos = BZ_G_SIZE;                       \
      gSel = s->selector[groupNo];                \
      gMinlen = s->minLens[gSel];                 \
      gLimit = &(s->limit[gSel][0]);              \
      gPerm = &(s->perm[gSel][0]);                \
      gBase = &(s->base[gSel][0]);                \
   }                                              \
   groupPos--;                                    \
   zn = gMinlen;                                  \
   GET_BITS(label1, zvec, zn);                    \
   while (1) {                                    \
      if (zn > 20 /* the longest code */)         \
         RETURN(BZ_DATA_ERROR);                   \
      if (zvec <= gLimit[zn]) break;              \
      zn++;                                       \
      GET_BIT(label2, zj);                        \
      zvec = (zvec << 1) | zj;                    \
   };                                             \
   if (zvec - gBase[zn] < 0                       \
       || zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE)  \
      RETURN(BZ_DATA_ERROR);                      \
   lval = gPerm[zvec - gBase[zn]];                \
}


/*---------------------------------------------------*/
Int32 BZ2_decompress ( DState* s )
{
   UChar      uc;
   Int32      retVal;
   Int32      minLen, maxLen;
   bz_stream* strm = s->strm;

   /* stuff that needs to be saved/restored */
   Int32  i;
   Int32  j;
   Int32  t;
   Int32  alphaSize;
   Int32  nGroups;
   Int32  nSelectors;
   Int32  EOB;
   Int32  groupNo;
   Int32  groupPos;
   Int32  nextSym;
   Int32  nblockMAX;
   Int32  nblock;
   Int32  es;
   Int32  N;
   Int32  curr;
   Int32  zt;
   Int32  zn; 
   Int32  zvec;
   Int32  zj;
   Int32  gSel;
   Int32  gMinlen;
   Int32* gLimit;
   Int32* gBase;
   Int32* gPerm;

   if (s->state == BZ_X_MAGIC_1) {
      /*initialise the save area*/
      s->save_i           = 0;
      s->save_j           = 0;
      s->save_t           = 0;
      s->save_alphaSize   = 0;
      s->save_nGroups     = 0;
      s->save_nSelectors  = 0;
      s->save_EOB         = 0;
      s->save_groupNo     = 0;
      s->save_groupPos    = 0;
      s->save_nextSym     = 0;
      s->save_nblockMAX   = 0;
      s->save_nblock      = 0;
      s->save_es          = 0;
      s->save_N           = 0;
      s->save_curr        = 0;
      s->save_zt          = 0;
      s->save_zn          = 0;
      s->save_zvec        = 0;
      s->save_zj          = 0;
      s->save_gSel        = 0;
      s->save_gMinlen     = 0;
      s->save_gLimit      = NULL;
      s->save_gBase       = NULL;
      s->save_gPerm       = NULL;
   }

   /*restore from the save area*/
   i           = s->save_i;
   j           = s->save_j;
   t           = s->save_t;
   alphaSize   = s->save_alphaSize;
   nGroups     = s->save_nGroups;
   nSelectors  = s->save_nSelectors;
   EOB         = s->save_EOB;
   groupNo     = s->save_groupNo;
   groupPos    = s->save_groupPos;
   nextSym     = s->save_nextSym;
   nblockMAX   = s->save_nblockMAX;
   nblock      = s->save_nblock;
   es          = s->save_es;
   N           = s->save_N;
   curr        = s->save_curr;
   zt          = s->save_zt;
   zn          = s->save_zn; 
   zvec        = s->save_zvec;
   zj          = s->save_zj;
   gSel        = s->save_gSel;
   gMinlen     = s->save_gMinlen;
   gLimit      = s->save_gLimit;
   gBase       = s->save_gBase;
   gPerm       = s->save_gPerm;

   retVal = BZ_OK;

   switch (s->state) {

      GET_UCHAR(BZ_X_MAGIC_1, uc);
      if (uc != 'B') RETURN(BZ_DATA_ERROR_MAGIC);

      GET_UCHAR(BZ_X_MAGIC_2, uc);
      if (uc != 'Z') RETURN(BZ_DATA_ERROR_MAGIC);

      GET_UCHAR(BZ_X_MAGIC_3, uc)
      if (uc != 'h') RETURN(BZ_DATA_ERROR_MAGIC);

      GET_BITS(BZ_X_MAGIC_4, s->blockSize100k, 8)
      if (s->blockSize100k < '1' || 
          s->blockSize100k > '9') RETURN(BZ_DATA_ERROR_MAGIC);
      s->blockSize100k -= '0';

      if (0 && s->smallDecompress) {
         s->ll16 = BZALLOC( s->blockSize100k * 100000 * sizeof(UInt16) );
         s->ll4  = BZALLOC( 
                      ((1 + s->blockSize100k * 100000) >> 1) * sizeof(UChar) 
                   );
         if (s->ll16 == NULL || s->ll4 == NULL) RETURN(BZ_MEM_ERROR);
      } else {
         s->tt  = BZALLOC( s->blockSize100k * 100000 * sizeof(Int32) );
         if (s->tt == NULL) RETURN(BZ_MEM_ERROR);
      }

      GET_UCHAR(BZ_X_BLKHDR_1, uc);

      if (uc == 0x17) goto endhdr_2;
      if (uc != 0x31) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_BLKHDR_2, uc);
      if (uc != 0x41) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_BLKHDR_3, uc);
      if (uc != 0x59) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_BLKHDR_4, uc);
      if (uc != 0x26) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_BLKHDR_5, uc);
      if (uc != 0x53) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_BLKHDR_6, uc);
      if (uc != 0x59) RETURN(BZ_DATA_ERROR);

      s->currBlockNo++;
    //  if (s->verbosity >= 2)
    //     VPrintf1 ( "\n    [%d: huff+mtf ", s->currBlockNo );
 
      s->storedBlockCRC = 0;
      GET_UCHAR(BZ_X_BCRC_1, uc);
      s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
      GET_UCHAR(BZ_X_BCRC_2, uc);
      s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
      GET_UCHAR(BZ_X_BCRC_3, uc);
      s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
      GET_UCHAR(BZ_X_BCRC_4, uc);
      s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);

      GET_BITS(BZ_X_RANDBIT, s->blockRandomised, 1);

      s->origPtr = 0;
      GET_UCHAR(BZ_X_ORIGPTR_1, uc);
      s->origPtr = (s->origPtr << 8) | ((Int32)uc);
      GET_UCHAR(BZ_X_ORIGPTR_2, uc);
      s->origPtr = (s->origPtr << 8) | ((Int32)uc);
      GET_UCHAR(BZ_X_ORIGPTR_3, uc);
      s->origPtr = (s->origPtr << 8) | ((Int32)uc);

      if (s->origPtr < 0)
         RETURN(BZ_DATA_ERROR);
      if (s->origPtr > 10 + 100000*s->blockSize100k) 
         RETURN(BZ_DATA_ERROR);

      /*--- Receive the mapping table ---*/
      for (i = 0; i < 16; i++) {
         GET_BIT(BZ_X_MAPPING_1, uc);
         if (uc == 1) 
            s->inUse16[i] = True; else 
            s->inUse16[i] = False;
      }

      for (i = 0; i < 256; i++) s->inUse[i] = False;

      for (i = 0; i < 16; i++)
         if (s->inUse16[i])
            for (j = 0; j < 16; j++) {
               GET_BIT(BZ_X_MAPPING_2, uc);
               if (uc == 1) s->inUse[i * 16 + j] = True;
            }
      makeMaps_d ( s );
      if (s->nInUse == 0) RETURN(BZ_DATA_ERROR);
      alphaSize = s->nInUse+2;

      /*--- Now the selectors ---*/
      GET_BITS(BZ_X_SELECTOR_1, nGroups, 3);
      if (nGroups < 2 || nGroups > 6) RETURN(BZ_DATA_ERROR);
      GET_BITS(BZ_X_SELECTOR_2, nSelectors, 15);
      if (nSelectors < 1) RETURN(BZ_DATA_ERROR);
      for (i = 0; i < nSelectors; i++) {
         j = 0;
         while (True) {
            GET_BIT(BZ_X_SELECTOR_3, uc);
            if (uc == 0) break;
            j++;
            if (j >= nGroups) RETURN(BZ_DATA_ERROR);
         }
         s->selectorMtf[i] = j;
      }

      /*--- Undo the MTF values for the selectors. ---*/
      {
         UChar pos[BZ_N_GROUPS], tmp, v;
         for (v = 0; v < nGroups; v++) pos[v] = v;
   
         for (i = 0; i < nSelectors; i++) {
            v = s->selectorMtf[i];
            tmp = pos[v];
            while (v > 0) { pos[v] = pos[v-1]; v--; }
            pos[0] = tmp;
            s->selector[i] = tmp;
         }
      }

      /*--- Now the coding tables ---*/
      for (t = 0; t < nGroups; t++) {
         GET_BITS(BZ_X_CODING_1, curr, 5);
         for (i = 0; i < alphaSize; i++) {
            while (True) {
               if (curr < 1 || curr > 20) RETURN(BZ_DATA_ERROR);
               GET_BIT(BZ_X_CODING_2, uc);
               if (uc == 0) break;
               GET_BIT(BZ_X_CODING_3, uc);
               if (uc == 0) curr++; else curr--;
            }
            s->len[t][i] = curr;
         }
      }

      /*--- Create the Huffman decoding tables ---*/
      for (t = 0; t < nGroups; t++) {
         minLen = 32;
         maxLen = 0;
         for (i = 0; i < alphaSize; i++) {
            if (s->len[t][i] > maxLen) maxLen = s->len[t][i];
            if (s->len[t][i] < minLen) minLen = s->len[t][i];
         }
         BZ2_hbCreateDecodeTables ( 
            &(s->limit[t][0]), 
            &(s->base[t][0]), 
            &(s->perm[t][0]), 
            &(s->len[t][0]),
            minLen, maxLen, alphaSize
         );
         s->minLens[t] = minLen;
      }

      /*--- Now the MTF values ---*/

      EOB      = s->nInUse+1;
      nblockMAX = 100000 * s->blockSize100k;
      groupNo  = -1;
      groupPos = 0;

      for (i = 0; i <= 255; i++) s->unzftab[i] = 0;

      /*-- MTF init --*/
      {
         Int32 ii, jj, kk;
         kk = MTFA_SIZE-1;
         for (ii = 256 / MTFL_SIZE - 1; ii >= 0; ii--) {
            for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
               s->mtfa[kk] = (UChar)(ii * MTFL_SIZE + jj);
               kk--;
            }
            s->mtfbase[ii] = kk + 1;
         }
      }
      /*-- end MTF init --*/

      nblock = 0;
      GET_MTF_VAL(BZ_X_MTF_1, BZ_X_MTF_2, nextSym);

      while (True) {

         if (nextSym == EOB) break;

         if (nextSym == BZ_RUNA || nextSym == BZ_RUNB) {

            es = -1;
            N = 1;
            do {
               if (nextSym == BZ_RUNA) es = es + (0+1) * N; else
               if (nextSym == BZ_RUNB) es = es + (1+1) * N;
               N = N * 2;
               GET_MTF_VAL(BZ_X_MTF_3, BZ_X_MTF_4, nextSym);
            }
               while (nextSym == BZ_RUNA || nextSym == BZ_RUNB);

            es++;
            uc = s->seqToUnseq[ s->mtfa[s->mtfbase[0]] ];
            s->unzftab[uc] += es;

            if (0 && s->smallDecompress)
               while (es > 0) {
                  if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
                  s->ll16[nblock] = (UInt16)uc;
                  nblock++;
                  es--;
               }
            else
               while (es > 0) {
                  if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
                  s->tt[nblock] = (UInt32)uc;
                  nblock++;
                  es--;
               };

            continue;

         } else {

            if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);

            /*-- uc = MTF ( nextSym-1 ) --*/
            {
               Int32 ii, jj, kk, pp, lno, off;
               UInt32 nn;
               nn = (UInt32)(nextSym - 1);

               if (nn < MTFL_SIZE) {
                  /* avoid general-case expense */
                  pp = s->mtfbase[0];
                  uc = s->mtfa[pp+nn];
                  while (nn > 3) {
                     Int32 z = pp+nn;
                     s->mtfa[(z)  ] = s->mtfa[(z)-1];
                     s->mtfa[(z)-1] = s->mtfa[(z)-2];
                     s->mtfa[(z)-2] = s->mtfa[(z)-3];
                     s->mtfa[(z)-3] = s->mtfa[(z)-4];
                     nn -= 4;
                  }
                  while (nn > 0) { 
                     s->mtfa[(pp+nn)] = s->mtfa[(pp+nn)-1]; nn--; 
                  };
                  s->mtfa[pp] = uc;
               } else { 
                  /* general case */
                  lno = nn / MTFL_SIZE;
                  off = nn % MTFL_SIZE;
                  pp = s->mtfbase[lno] + off;
                  uc = s->mtfa[pp];
                  while (pp > s->mtfbase[lno]) { 
                     s->mtfa[pp] = s->mtfa[pp-1]; pp--; 
                  };
                  s->mtfbase[lno]++;
                  while (lno > 0) {
                     s->mtfbase[lno]--;
                     s->mtfa[s->mtfbase[lno]] 
                        = s->mtfa[s->mtfbase[lno-1] + MTFL_SIZE - 1];
                     lno--;
                  }
                  s->mtfbase[0]--;
                  s->mtfa[s->mtfbase[0]] = uc;
                  if (s->mtfbase[0] == 0) {
                     kk = MTFA_SIZE-1;
                     for (ii = 256 / MTFL_SIZE-1; ii >= 0; ii--) {
                        for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
                           s->mtfa[kk] = s->mtfa[s->mtfbase[ii] + jj];
                           kk--;
                        }
                        s->mtfbase[ii] = kk + 1;
                     }
                  }
               }
            }
            /*-- end uc = MTF ( nextSym-1 ) --*/

            s->unzftab[s->seqToUnseq[uc]]++;
            if (0 && s->smallDecompress)
               s->ll16[nblock] = (UInt16)(s->seqToUnseq[uc]); else
               s->tt[nblock]   = (UInt32)(s->seqToUnseq[uc]);
            nblock++;

            GET_MTF_VAL(BZ_X_MTF_5, BZ_X_MTF_6, nextSym);
            continue;
         }
      }

      /* Now we know what nblock is, we can do a better sanity
         check on s->origPtr.
      */
      if (s->origPtr < 0 || s->origPtr >= nblock)
         RETURN(BZ_DATA_ERROR);

      s->state_out_len = 0;
      s->state_out_ch  = 0;
      BZ_INITIALISE_CRC ( s->calculatedBlockCRC );
      s->state = BZ_X_OUTPUT;
    //  if (s->verbosity >= 2) VPrintf0 ( "rt+rld" );

      /*-- Set up cftab to facilitate generation of T^(-1) --*/
      s->cftab[0] = 0;
      for (i = 1; i <= 256; i++) s->cftab[i] = s->unzftab[i-1];
      for (i = 1; i <= 256; i++) s->cftab[i] += s->cftab[i-1];

      if (0 && s->smallDecompress) {

         /*-- Make a copy of cftab, used in generation of T --*/
         for (i = 0; i <= 256; i++) s->cftabCopy[i] = s->cftab[i];

         /*-- compute the T vector --*/
         for (i = 0; i < nblock; i++) {
            uc = (UChar)(s->ll16[i]);
            SET_LL(i, s->cftabCopy[uc]);
            s->cftabCopy[uc]++;
         }

         /*-- Compute T^(-1) by pointer reversal on T --*/
         i = s->origPtr;
         j = GET_LL(i);
         do {
            Int32 tmp = GET_LL(j);
            SET_LL(j, i);
            i = j;
            j = tmp;
         }
            while (i != s->origPtr);

         s->tPos = s->origPtr;
         s->nblock_used = 0;
         if (s->blockRandomised) {
            BZ_RAND_INIT_MASK;
            BZ_GET_SMALL(s->k0); s->nblock_used++;
            BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; 
         } else {
            BZ_GET_SMALL(s->k0); s->nblock_used++;
         }

      } else {

         /*-- compute the T^(-1) vector --*/
         for (i = 0; i < nblock; i++) {
            uc = (UChar)(s->tt[i] & 0xff);
            s->tt[s->cftab[uc]] |= (i << 8);
            s->cftab[uc]++;
         }

         s->tPos = s->tt[s->origPtr] >> 8;
         s->nblock_used = 0;
         if (s->blockRandomised) {
            BZ_RAND_INIT_MASK;
            BZ_GET_FAST(s->k0); s->nblock_used++;
            BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; 
         } else {
            BZ_GET_FAST(s->k0); s->nblock_used++;
         }

      }

      RETURN(BZ_OK);



    endhdr_2:

      GET_UCHAR(BZ_X_ENDHDR_2, uc);
      if (uc != 0x72) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_ENDHDR_3, uc);
      if (uc != 0x45) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_ENDHDR_4, uc);
      if (uc != 0x38) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_ENDHDR_5, uc);
      if (uc != 0x50) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_ENDHDR_6, uc);
      if (uc != 0x90) RETURN(BZ_DATA_ERROR);

      s->storedCombinedCRC = 0;
      GET_UCHAR(BZ_X_CCRC_1, uc);
      s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
      GET_UCHAR(BZ_X_CCRC_2, uc);
      s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
      GET_UCHAR(BZ_X_CCRC_3, uc);
      s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
      GET_UCHAR(BZ_X_CCRC_4, uc);
      s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);

      s->state = BZ_X_IDLE;
      RETURN(BZ_STREAM_END);

      default: AssertH ( False, 4001 );
   }

   AssertH ( False, 4002 );

   save_state_and_return:

   s->save_i           = i;
   s->save_j           = j;
   s->save_t           = t;
   s->save_alphaSize   = alphaSize;
   s->save_nGroups     = nGroups;
   s->save_nSelectors  = nSelectors;
   s->save_EOB         = EOB;
   s->save_groupNo     = groupNo;
   s->save_groupPos    = groupPos;
   s->save_nextSym     = nextSym;
   s->save_nblockMAX   = nblockMAX;
   s->save_nblock      = nblock;
   s->save_es          = es;
   s->save_N           = N;
   s->save_curr        = curr;
   s->save_zt          = zt;
   s->save_zn          = zn;
   s->save_zvec        = zvec;
   s->save_zj          = zj;
   s->save_gSel        = gSel;
   s->save_gMinlen     = gMinlen;
   s->save_gLimit      = gLimit;
   s->save_gBase       = gBase;
   s->save_gPerm       = gPerm;

   return retVal;   
}


/*-------------------------------------------------------------*/
/*--- end                                      decompress.c ---*/
/*-------------------------------------------------------------*/

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to [email protected].