#include "u.h"
#include "../port/lib.h"
#include "mem.h"
#include "dat.h"
#include "fns.h"
#include "init.h"
#include "arm.h"
#include <pool.h>
#include "reboot.h"
/*
* Where configuration info is left for the loaded programme.
* This will turn into a structure as more is done by the boot loader
* (e.g. why parse the .ini file twice?).
* There are 3584 bytes available at CONFADDR.
*/
#define BOOTARGS ((char*)CONFADDR)
#define BOOTARGSLEN (16*KiB) /* limit in devenv.c */
#define MAXCONF 64
#define MAXCONFLINE 160
enum {
Maxmem = 512*MB, /* limited by address ranges */
Minmem = 256*MB, /* conservative default */
};
#define isascii(c) ((uchar)(c) > 0 && (uchar)(c) < 0177)
uintptr kseg0 = KZERO;
Mach* machaddr[MAXMACH];
/*
* Option arguments from the command line.
* oargv[0] is the boot file.
* Optionsinit() is called from multiboot()
* or some other machine-dependent place
* to set it all up.
*/
static int oargc;
static char* oargv[20];
static char oargb[128];
static int oargblen;
static char oenv[4096];
static uintptr sp; /* XXX - must go - user stack of init proc */
int vflag;
char debug[256];
/* store plan9.ini contents here at least until we stash them in #ec */
static char confname[MAXCONF][KNAMELEN];
static char confval[MAXCONF][MAXCONFLINE];
static int nconf;
#ifdef CRYPTOSANDBOX
uchar sandbox[64*1024+BY2PG];
#endif
static int
findconf(char *name)
{
int i;
for(i = 0; i < nconf; i++)
if(cistrcmp(confname[i], name) == 0)
return i;
return -1;
}
char*
getconf(char *name)
{
int i;
i = findconf(name);
if(i >= 0)
return confval[i];
return nil;
}
void
addconf(char *name, char *val)
{
int i;
i = findconf(name);
if(i < 0){
if(val == nil || nconf >= MAXCONF)
return;
i = nconf++;
strecpy(confname[i], confname[i]+sizeof(confname[i]), name);
}
// confval[i] = val;
strecpy(confval[i], confval[i]+sizeof(confval[i]), val);
}
static void
writeconf(void)
{
char *p, *q;
int n;
p = getconfenv();
if(waserror()) {
free(p);
nexterror();
}
/* convert to name=value\n format */
for(q=p; *q; q++) {
q += strlen(q);
*q = '=';
q += strlen(q);
*q = '\n';
}
n = q - p + 1;
if(n >= BOOTARGSLEN)
error("kernel configuration too large");
memmove(BOOTARGS, p, n);
poperror();
free(p);
}
/*
* assumes that we have loaded our /cfg/pxe/mac file at 0x1000 with
* tftp in u-boot. no longer uses malloc, so can be called early.
*/
static void
plan9iniinit(void)
{
char *k, *v, *next;
k = (char *)CONFADDR;
if(!isascii(*k))
return;
for(; k && *k != '\0'; k = next) {
if (!isascii(*k)) /* sanity check */
break;
next = strchr(k, '\n');
if (next)
*next++ = '\0';
if (*k == '\0' || *k == '\n' || *k == '#')
continue;
v = strchr(k, '=');
if(v == nil)
continue; /* mal-formed line */
*v++ = '\0';
addconf(k, v);
}
}
static void
optionsinit(char* s)
{
char *o;
o = strecpy(oargb, oargb+sizeof(oargb), s)+1;
if(getenv("bootargs", o, o - oargb) != nil)
*(o-1) = ' ';
oargblen = strlen(oargb);
oargc = tokenize(oargb, oargv, nelem(oargv)-1);
oargv[oargc] = nil;
}
char*
getenv(char* name, char* buf, int n)
{
char *e, *p, *q;
p = oenv;
while(*p != 0){
if((e = strchr(p, '=')) == nil)
break;
for(q = name; p < e; p++){
if(*p != *q)
break;
q++;
}
if(p == e && *q == 0){
strecpy(buf, buf+n, e+1);
return buf;
}
p += strlen(p)+1;
}
return nil;
}
#include "io.h"
typedef struct Spiregs Spiregs;
struct Spiregs {
ulong ictl; /* interface ctl */
ulong icfg; /* interface config */
ulong out; /* data out */
ulong in; /* data in */
ulong ic; /* interrupt cause */
ulong im; /* interrupt mask */
ulong _pad[2];
ulong dwrcfg; /* direct write config */
ulong dwrhdr; /* direct write header */
};
enum {
/* ictl bits */
Csnact = 1<<0, /* serial memory activated */
/* icfg bits */
Bytelen = 1<<5, /* 2^(this_bit) bytes per transfer */
Dirrdcmd= 1<<10, /* flag: fast read */
};
static void
dumpbytes(uchar *bp, long max)
{
iprint("%#p: ", bp);
for (; max > 0; max--)
iprint("%02.2ux ", *bp++);
iprint("...\n");
}
void archconsole(void);
vlong probeaddr(uintptr);
static void
spiprobe(void)
{
if (0) {
/* generates repeated "spurious irqbridge interrupt: 00000010" on sheevaplug. */
Spiregs *rp = (Spiregs *)soc.spi;
if (probeaddr(soc.spi) < 0)
return;
rp->ictl |= Csnact;
coherence();
rp->icfg |= Dirrdcmd | 3<<8; /* fast reads, 4-byte addresses */
rp->icfg &= ~Bytelen; /* one-byte reads */
coherence();
print("spi flash ignored: ctlr %#p, data %#ux", rp, PHYSSPIFLASH);
mmuidmap(PHYSSPIFLASH, 1);
if (probeaddr(PHYSSPIFLASH) < 0)
print(" (no response)");
print(": memory reads enabled\n");
}
}
/*
* entered from l.s with mmu enabled.
*
* we may have to realign the data segment; apparently 5l -H0 -R4096
* does not pad the text segment. on the other hand, we may have been
* loaded by another kernel.
*
* be careful not to touch the data segment until we know it's aligned.
*/
void
main(Mach* mach)
{
extern char bdata[], edata[], end[], etext[];
static ulong vfy = 0xcafebabe;
m = mach;
if (vfy != 0xcafebabe)
memmove(bdata, etext, edata - bdata);
if (vfy != 0xcafebabe) {
wave('?');
panic("misaligned data segment");
}
memset(edata, 0, end - edata); /* zero bss */
vfy = 0;
wave('9');
machinit();
archreset();
mmuinit();
optionsinit("/boot/boot boot");
quotefmtinstall();
archconsole();
wave(' ');
/* want plan9.ini to be able to affect memory sizing in confinit */
plan9iniinit(); /* before we step on plan9.ini in low memory */
/* set memsize before xinit */
confinit();
/* xinit would print if it could */
xinit();
/*
* Printinit will cause the first malloc call.
* (printinit->qopen->malloc) unless any of the
* above (like clockintr) do an irqenable, which
* will call malloc.
* If the system dies here it's probably due
* to malloc(->xalloc) not being initialised
* correctly, or the data segment is misaligned
* (it's amazing how far you can get with
* things like that completely broken).
*
* (Should be) boilerplate from here on.
*/
trapinit();
clockinit();
printinit();
uartkirkwoodconsole();
/* only now can we print */
print("from Bell Labs\n\n");
#ifdef CRYPTOSANDBOX
print("sandbox: 64K at physical %#lux, mapped to 0xf10b0000\n",
PADDR((uintptr)sandbox & ~(BY2PG-1)));
#endif
archconfinit();
cpuidprint();
timersinit();
procinit0();
initseg();
links();
chandevreset(); /* most devices are discovered here */
spiprobe();
pageinit();
swapinit();
userinit();
schedinit();
panic("schedinit returned");
}
void
cpuidprint(void)
{
char name[64];
cputype2name(name, sizeof name);
print("cpu%d: %lldMHz ARM %s\n", m->machno, m->cpuhz/1000000, name);
}
void
machinit(void)
{
memset(m, 0, sizeof(Mach));
m->machno = 0;
machaddr[m->machno] = m;
m->ticks = 1;
m->perf.period = 1;
conf.nmach = 1;
active.machs = 1;
active.exiting = 0;
up = nil;
}
static void
shutdown(int ispanic)
{
int ms, once;
lock(&active);
if(ispanic)
active.ispanic = ispanic;
else if(m->machno == 0 && (active.machs & (1<<m->machno)) == 0)
active.ispanic = 0;
once = active.machs & (1<<m->machno);
active.machs &= ~(1<<m->machno);
active.exiting = 1;
unlock(&active);
if(once)
iprint("cpu%d: exiting\n", m->machno);
spllo();
for(ms = 5*1000; ms > 0; ms -= TK2MS(2)){
delay(TK2MS(2));
if(active.machs == 0 && consactive() == 0)
break;
}
delay(1000);
}
/*
* exit kernel either on a panic or user request
*/
void
exit(int code)
{
shutdown(code);
splhi();
archreboot();
}
/*
* the new kernel is already loaded at address `code'
* of size `size' and entry point `entry'.
*/
void
reboot(void *entry, void *code, ulong size)
{
void (*f)(ulong, ulong, ulong);
iprint("starting reboot...");
writeconf();
shutdown(0);
/*
* should be the only processor running now
*/
print("shutting down...\n");
delay(200);
/* turn off buffered serial console */
serialoq = nil;
/* shutdown devices */
chandevshutdown();
/* call off the dog */
clockshutdown();
splhi();
/* setup reboot trampoline function */
f = (void*)REBOOTADDR;
memmove(f, rebootcode, sizeof(rebootcode));
cacheuwbinv();
l2cacheuwb();
print("rebooting...");
iprint("entry %#lux code %#lux size %ld\n",
PADDR(entry), PADDR(code), size);
delay(100); /* wait for uart to quiesce */
/* off we go - never to return */
cacheuwbinv();
l2cacheuwb();
(*f)(PADDR(entry), PADDR(code), size);
iprint("loaded kernel returned!\n");
delay(1000);
archreboot();
}
/*
* starting place for first process
*/
void
init0(void)
{
int i;
char buf[2*KNAMELEN];
assert(up != nil);
up->nerrlab = 0;
coherence();
spllo();
/*
* These are o.k. because rootinit is null.
* Then early kproc's will have a root and dot.
*/
up->slash = namec("#/", Atodir, 0, 0);
pathclose(up->slash->path);
up->slash->path = newpath("/");
up->dot = cclone(up->slash);
chandevinit();
if(!waserror()){
snprint(buf, sizeof(buf), "%s %s", "ARM", conffile);
ksetenv("terminal", buf, 0);
ksetenv("cputype", "arm", 0);
if(cpuserver)
ksetenv("service", "cpu", 0);
else
ksetenv("service", "terminal", 0);
/* convert plan9.ini variables to #e and #ec */
for(i = 0; i < nconf; i++) {
ksetenv(confname[i], confval[i], 0);
ksetenv(confname[i], confval[i], 1);
}
poperror();
}
kproc("alarm", alarmkproc, 0);
touser(sp);
}
static void
bootargs(uintptr base)
{
int i;
ulong ssize;
char **av, *p;
/*
* Push the boot args onto the stack.
* The initial value of the user stack must be such
* that the total used is larger than the maximum size
* of the argument list checked in syscall.
*/
i = oargblen+1;
p = UINT2PTR(STACKALIGN(base + BY2PG - sizeof(up->s.args) - i));
memmove(p, oargb, i);
/*
* Now push argc and the argv pointers.
* This isn't strictly correct as the code jumped to by
* touser in init9.s calls startboot (port/initcode.c) which
* expects arguments
* startboot(char *argv0, char **argv)
* not the usual (int argc, char* argv[]), but argv0 is
* unused so it doesn't matter (at the moment...).
*/
av = (char**)(p - (oargc+2)*sizeof(char*));
ssize = base + BY2PG - PTR2UINT(av);
*av++ = (char*)oargc;
for(i = 0; i < oargc; i++)
*av++ = (oargv[i] - oargb) + (p - base) + (USTKTOP - BY2PG);
*av = nil;
/*
* Leave space for the return PC of the
* caller of initcode.
*/
sp = USTKTOP - ssize - sizeof(void*);
}
/*
* create the first process
*/
void
userinit(void)
{
Proc *p;
Segment *s;
KMap *k;
Page *pg;
/* no processes yet */
up = nil;
p = newproc();
p->pgrp = newpgrp();
p->egrp = smalloc(sizeof(Egrp));
p->egrp->ref = 1;
p->fgrp = dupfgrp(nil);
p->rgrp = newrgrp();
p->procmode = 0640;
kstrdup(&eve, "");
kstrdup(&p->text, "*init*");
kstrdup(&p->user, eve);
/*
* Kernel Stack
*/
p->sched.pc = PTR2UINT(init0);
p->sched.sp = PTR2UINT(p->kstack+KSTACK-sizeof(up->s.args)-sizeof(uintptr));
p->sched.sp = STACKALIGN(p->sched.sp);
/*
* User Stack
*
* Technically, newpage can't be called here because it
* should only be called when in a user context as it may
* try to sleep if there are no pages available, but that
* shouldn't be the case here.
*/
s = newseg(SG_STACK, USTKTOP-USTKSIZE, USTKSIZE/BY2PG);
p->seg[SSEG] = s;
pg = newpage(1, 0, USTKTOP-BY2PG);
segpage(s, pg);
k = kmap(pg);
bootargs(VA(k));
kunmap(k);
/*
* Text
*/
s = newseg(SG_TEXT, UTZERO, 1);
s->flushme++;
p->seg[TSEG] = s;
pg = newpage(1, 0, UTZERO);
memset(pg->cachectl, PG_TXTFLUSH, sizeof(pg->cachectl));
segpage(s, pg);
k = kmap(s->map[0]->pages[0]);
memmove(UINT2PTR(VA(k)), initcode, sizeof initcode);
kunmap(k);
ready(p);
}
Conf conf; /* XXX - must go - gag */
Confmem sheevamem[nelem(conf.mem)] = {
/*
* Memory available to Plan 9:
* the 8K is reserved for ethernet dma access violations to scribble on.
*/
{ .base = PHYSDRAM, .limit = PHYSDRAM + Maxmem - 8*1024, },
};
ulong memsize = Maxmem;
static int
gotmem(uintptr sz)
{
uintptr addr;
addr = PHYSDRAM + sz - MB;
mmuidmap(addr, 1);
if (probeaddr(addr) >= 0) {
memsize = sz;
return 0;
}
return -1;
}
void
confinit(void)
{
int i;
ulong kpages;
uintptr pa;
char *p;
/*
* Copy the physical memory configuration to Conf.mem.
*/
if(nelem(sheevamem) > nelem(conf.mem)){
iprint("memory configuration botch\n");
exit(1);
}
if((p = getconf("*maxmem")) != nil) {
memsize = strtoul(p, 0, 0) - PHYSDRAM;
if (memsize < 16*MB) /* sanity */
memsize = 16*MB;
}
/*
* see if all that memory exists; if not, find out how much does.
* trapinit must have been called first.
*/
if (gotmem(memsize) < 0 && gotmem(256*MB) < 0 && gotmem(128*MB) < 0) {
iprint("can't find any memory, assuming %dMB\n", Minmem / MB);
memsize = Minmem;
}
sheevamem[0].limit = PHYSDRAM + memsize - 8*1024;
memmove(conf.mem, sheevamem, sizeof(sheevamem));
conf.npage = 0;
pa = PADDR(PGROUND(PTR2UINT(end)));
/*
* we assume that the kernel is at the beginning of one of the
* contiguous chunks of memory and fits therein.
*/
for(i=0; i<nelem(conf.mem); i++){
/* take kernel out of allocatable space */
if(pa > conf.mem[i].base && pa < conf.mem[i].limit)
conf.mem[i].base = pa;
conf.mem[i].npage = (conf.mem[i].limit - conf.mem[i].base)/BY2PG;
conf.npage += conf.mem[i].npage;
}
conf.upages = (conf.npage*90)/100;
conf.ialloc = ((conf.npage-conf.upages)/2)*BY2PG;
/* only one processor */
conf.nmach = 1;
/* set up other configuration parameters */
conf.nproc = 100 + ((conf.npage*BY2PG)/MB)*5;
if(cpuserver)
conf.nproc *= 3;
if(conf.nproc > 2000)
conf.nproc = 2000;
conf.nswap = conf.npage*3;
conf.nswppo = 4096;
conf.nimage = 200;
conf.copymode = 0; /* copy on write */
/*
* Guess how much is taken by the large permanent
* datastructures. Mntcache and Mntrpc are not accounted for
* (probably ~300KB).
*/
kpages = conf.npage - conf.upages;
kpages *= BY2PG;
kpages -= conf.upages*sizeof(Page)
+ conf.nproc*sizeof(Proc)
+ conf.nimage*sizeof(Image)
+ conf.nswap
+ conf.nswppo*sizeof(Page);
mainmem->maxsize = kpages;
if(!cpuserver)
/*
* give terminals lots of image memory, too; the dynamic
* allocation will balance the load properly, hopefully.
* be careful with 32-bit overflow.
*/
imagmem->maxsize = kpages;
}
int
cmpswap(long *addr, long old, long new)
{
return cas32(addr, old, new);
}
|