/*{{{ #defines */
#include <limits.h>
#include "lame.h"
#include "util.h"
#define ENCDELAY 576
#define MDCTDELAY 48
#define BLKSIZE 1024
#define HBLKSIZE (BLKSIZE/2 + 1)
#define BLKSIZE_s 256
#define HBLKSIZE_s (BLKSIZE_s/2 + 1)
#define MAX_TABLES 1002
#define TAPS 32
#define WINDOW_SIZE 15.5
#define WINDOW hanning
#define inline __inline
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#ifndef M_PIl
# define M_PIl 3.1415926535897932384626433832795029L
#endif
#define SIN sin
#define COS cos
/*}}}*/
/*{{{ object ID's */
#define RESAMPLE_ID 0x52455341LU
#define PSYCHO_ID 0x50535943LU
#define BITSTREAM_ID 0x42495453LU
/*}}}*/
/*{{{ typedef's */
typedef float float32_t; // IEEE-754 32 bit floating point
typedef double float64_t; // IEEE-754 64 bit floating point
typedef long double float80_t; // IEEE-854 80 bit floating point, if available
typedef long double float_t; // temporarly results of float operations
typedef long double double_t; // temporarly results of double operations
typedef long double longdouble_t; // temporarly results of long double operations
typedef float_t (*scalar_t) ( const sample_t* p, const sample_t* q );
typedef float_t (*scalarn_t) ( const sample_t* p, const sample_t* q, size_t len );
/*}}}*/
/*{{{ data direction attributes */
/*
* These are data stream direction attributes like used in Ada83/Ada95 and in RPC
* The data direction is seen from the caller to the calling function.
* Examples:
*
* size_t fread ( void INOUT* buffer, size_t items, size_t itemsize, FILE INOUT* fp );
* size_t fwrite ( void OUT * buffer, size_t items, size_t itemsize, FILE INOUT* fp );
* size_t memset ( void IN * buffer, unsigned char value, size_t size );
*
* Return values are implizit IN (note that here C uses the opposite attribute).
* Arguments not transmitted via references are implizit OUT.
*/
#define OUT /* [out] */ const
#define INOUT /* [inout] */
#define IN /* [in] */
#define OUTTR /* [out]: data is modified like [inout], but you don't get any useful back */
/*}}}*/
/*{{{ Test some error conditions */
#ifndef __LOC__
# define _STR2(x) #x
# define _STR1(x) _STR2(x)
# define __LOC__ __FILE__ "(" _STR1(__LINE__) ") : warning: "
#endif
/* The current code doesn't work on machines with non 8 bit char's in any way, so abort */
#if CHAR_BIT != 8
# pragma message ( __LOC__ "Machines with CHAR_BIT != 8 not yet supported" )
# pragma error
#endif
/*}}}*/
/*
* Now some information how PCM data can be specified. PCM data
* is specified by 3 attributes: pointer, length information
* and attributes.
* - Audio is always stored in 2D arrays, which are collapsing to 1D
* in the case of monaural input
* - 2D arrays can be stored as 2D arrays or as pointers to 1D arrays.
* - 2D data can be stored as samples*channels or as channels*samples
* - This gives 4 kinds of storing PCM data:
* + pcm [samples][channels] (LAME_INTERLEAVED)
* + pcm [channels][samples] (LAME_CHAINED)
* + (*pcm) [samples] (LAME_INDIRECT)
* + (*pcm) [channels]
* - The last I have never seen and it have a huge overhead (67% ... 200%),
* so the first three are implemented.
* - The monaural 1D cases can also be handled by the first two attributes
*/
#define LAME_INTERLEAVED 0x10000000
#define LAME_CHAINED 0x20000000
#define LAME_INDIRECT 0x30000000
/*
* Now we need some information about the byte order of the data.
* There are 4 cases possible (if you are not fully support such strange
* Machines like the PDPs):
* - You know the absolute byte order of the data (LAME_LITTLE_ENDIAN, LAME_BIG_ENDIAN)
* - You know the byte order from the view of the current machine
* (LAME_NATIVE_ENDIAN, LAME_OPPOSITE_ENDIAN)
* - The use of LAME_OPPOSITE_ENDIAN is NOT recommended because it is
* is a breakable attribute, use LAME_LITTLE_ENDIAN or LAME_BIG_ENDIAN
* instead
*/
#define LAME_NATIVE_ENDIAN 0x00000000
#define LAME_OPPOSITE_ENDIAN 0x01000000
#define LAME_LITTLE_ENDIAN 0x02000000
#define LAME_BIG_ENDIAN 0x03000000
/*
* The next attribute is the data type of the input data.
* There are currently 2 kinds of input data:
* - C based:
* LAME_{SHORT,INT,LONG}
* LAME_{FLOAT,DOUBLE,LONGDOUBLE}
* - Binary representation based:
* LAME_{UINT,INT}{8,16,24,32}
* LAME_{A,U}LAW
* LAME_FLOAT{32,64,80_ALIGN{2,4,8}}
*
* Don't use the C based for external data.
*/
#define LAME_SILENCE 0x00010000
#define LAME_UINT8 0x00020000
#define LAME_INT8 0x00030000
#define LAME_UINT16 0x00040000
#define LAME_INT16 0x00050000
#define LAME_UINT24 0x00060000
#define LAME_INT24 0x00070000
#define LAME_UINT32 0x00080000
#define LAME_INT32 0x00090000
#define LAME_FLOAT32 0x00140000
#define LAME_FLOAT64 0x00180000
#define LAME_FLOAT80_ALIGN2 0x001A0000
#define LAME_FLOAT80_ALIGN4 0x001C0000
#define LAME_FLOAT80_ALIGN8 0x00200000
#define LAME_SHORT 0x00210000
#define LAME_INT 0x00220000
#define LAME_LONG 0x00230000
#define LAME_FLOAT 0x00240000
#define LAME_DOUBLE 0x00250000
#define LAME_LONGDOUBLE 0x00260000
#define LAME_ALAW 0x00310000
#define LAME_ULAW 0x00320000
/*
* The last attribute is the number of input channels. Currently
* 1...65535 channels are possible, but only 1 and 2 are supported.
* So matrixing or MPEG-2 MultiChannelSupport are not a big problem.
*
* Note: Some people use the word 'stereo' for 2 channel stereophonic sound.
* But stereophonic sound is a collection of ALL methods to restore the
* stereophonic sound field starting from 2 channels up to audio
* holography.
*/
#define LAME_MONO 0x00000001
#define LAME_STEREO 0x00000002
#define LAME_STEREO_2_CHANNELS 0x00000002
#define LAME_STEREO_3_CHANNELS 0x00000003
#define LAME_STEREO_4_CHANNELS 0x00000004
#define LAME_STEREO_5_CHANNELS 0x00000005
#define LAME_STEREO_6_CHANNELS 0x00000006
#define LAME_STEREO_7_CHANNELS 0x00000007
#define LAME_STEREO_65535_CHANNELS\
0x0000FFFF
extern scalar_t scalar4;
extern scalar_t scalar8;
extern scalar_t scalar12;
extern scalar_t scalar16;
extern scalar_t scalar20;
extern scalar_t scalar24;
extern scalar_t scalar32;
extern scalarn_t scalar4n;
extern scalarn_t scalar1n;
float_t scalar04_float32_i387 ( const float32_t* p, const float32_t* q );
float_t scalar08_float32_i387 ( const float32_t* p, const float32_t* q );
float_t scalar12_float32_i387 ( const float32_t* p, const float32_t* q );
float_t scalar16_float32_i387 ( const float32_t* p, const float32_t* q );
float_t scalar20_float32_i387 ( const float32_t* p, const float32_t* q );
float_t scalar24_float32_i387 ( const float32_t* p, const float32_t* q );
float_t scalar32_float32_i387 ( const float32_t* p, const float32_t* q );
float_t scalar4n_float32_i387 ( const float32_t* p, const float32_t* q, const size_t len );
float_t scalar1n_float32_i387 ( const float32_t* p, const float32_t* q, const size_t len );
float_t scalar04_float32_3DNow ( const float32_t* p, const float32_t* q );
float_t scalar08_float32_3DNow ( const float32_t* p, const float32_t* q );
float_t scalar12_float32_3DNow ( const float32_t* p, const float32_t* q );
float_t scalar16_float32_3DNow ( const float32_t* p, const float32_t* q );
float_t scalar20_float32_3DNow ( const float32_t* p, const float32_t* q );
float_t scalar24_float32_3DNow ( const float32_t* p, const float32_t* q );
float_t scalar32_float32_3DNow ( const float32_t* p, const float32_t* q );
float_t scalar4n_float32_3DNow ( const float32_t* p, const float32_t* q, const size_t len );
float_t scalar1n_float32_3DNow ( const float32_t* p, const float32_t* q, const size_t len );
float_t scalar04_float32_SIMD ( const float32_t* p, const float32_t* q );
float_t scalar08_float32_SIMD ( const float32_t* p, const float32_t* q );
float_t scalar12_float32_SIMD ( const float32_t* p, const float32_t* q );
float_t scalar16_float32_SIMD ( const float32_t* p, const float32_t* q );
float_t scalar20_float32_SIMD ( const float32_t* p, const float32_t* q );
float_t scalar24_float32_SIMD ( const float32_t* p, const float32_t* q );
float_t scalar32_float32_SIMD ( const float32_t* p, const float32_t* q );
float_t scalar4n_float32_SIMD ( const float32_t* p, const float32_t* q, const size_t len );
float_t scalar1n_float32_SIMD ( const float32_t* p, const float32_t* q, const size_t len );
float_t scalar04_float32 ( const float32_t* p, const float32_t* q );
float_t scalar08_float32 ( const float32_t* p, const float32_t* q );
float_t scalar12_float32 ( const float32_t* p, const float32_t* q );
float_t scalar16_float32 ( const float32_t* p, const float32_t* q );
float_t scalar20_float32 ( const float32_t* p, const float32_t* q );
float_t scalar24_float32 ( const float32_t* p, const float32_t* q );
float_t scalar32_float32 ( const float32_t* p, const float32_t* q );
float_t scalar4n_float32 ( const float32_t* p, const float32_t* q, const size_t len );
float_t scalar1n_float32 ( const float32_t* p, const float32_t* q, const size_t len );
/*{{{ some prototypes */
resample_t* resample_open (
OUT long double sampfreq_in, // [Hz]
OUT long double sampfreq_out, // [Hz]
OUT double lowpass_freq, // [Hz] or <0 for auto mode
OUT int quality ); // Proposal: 0 default, 1 sample select, 2 linear interpol, 4 4-point interpolation, 32 32-point interpolation
int resample_buffer ( // return code, 0 for success
INOUT resample_t *const r, // internal structure
IN sample_t *const out, // where to write the output data
INOUT size_t *const out_req_len, // requested output data len/really written output data len
OUT sample_t *const in, // where are the input data?
INOUT size_t *const in_avail_len, // available input data len/consumed input data len
OUT size_t channel ); // number of the channel (needed for buffering)
int resample_close ( INOUT resample_t* const r );
void init_scalar_functions ( OUT lame_t* const lame );
long double unround_samplefrequency ( OUT long double freq );
#if 0
int lame_encode_mp3_frame ( // return code, 0 for success
INOUT lame_global_flags*, // internal context structure
OUTTR sample_t * inbuf_l, // data for left channel
OUTTR sample_t * inbuf_r, // data for right channel
IN uint8_t * mp3buf, // where to write the coded data
OUT size_t mp3buf_size ); // maximum size of coded data
#endif
int lame_encode_ogg_frame ( // return code, 0 for success
INOUT lame_global_flags*, // internal context structure
OUT sample_t * inbuf_l, // data for left channel
OUT sample_t * inbuf_r, // data for right channel
IN uint8_t * mp3buf, // where to write the coded data
OUT size_t mp3buf_size ); // maximum size of coded data
/*}}}*/
/* end of pcm.h */
|