/*
* sha2 128-bit
*/
#include <u.h>
#include <libc.h>
#include <libsec.h>
static void encode64(uchar*, u64int*, ulong);
static DigestState* sha2_128(uchar *, ulong, uchar *, SHA2_256state *, int);
extern void _sha2block128(uchar*, ulong, u64int*);
/*
* for sha2_384 and sha2_512, len must be multiple of 128 for all but
* the last call. There must be room in the input buffer to pad.
*
* Note: sha2_384 calls sha2_512block as sha2_384; it just uses a different
* initial seed to produce a truncated 384b hash result. otherwise
* it's the same as sha2_512.
*/
SHA2_384state*
sha2_384(uchar *p, ulong len, uchar *digest, SHA2_384state *s)
{
if(s == nil) {
s = mallocz(sizeof(*s), 1);
if(s == nil)
return nil;
s->malloced = 1;
}
if(s->seeded == 0){
/*
* seed the state with the first 64 bits of the fractional
* parts of the square roots of the 9th thru 16th primes.
*/
s->bstate[0] = 0xcbbb9d5dc1059ed8LL;
s->bstate[1] = 0x629a292a367cd507LL;
s->bstate[2] = 0x9159015a3070dd17LL;
s->bstate[3] = 0x152fecd8f70e5939LL;
s->bstate[4] = 0x67332667ffc00b31LL;
s->bstate[5] = 0x8eb44a8768581511LL;
s->bstate[6] = 0xdb0c2e0d64f98fa7LL;
s->bstate[7] = 0x47b5481dbefa4fa4LL;
s->seeded = 1;
}
return sha2_128(p, len, digest, s, SHA2_384dlen);
}
SHA2_512state*
sha2_512(uchar *p, ulong len, uchar *digest, SHA2_512state *s)
{
if(s == nil) {
s = mallocz(sizeof(*s), 1);
if(s == nil)
return nil;
s->malloced = 1;
}
if(s->seeded == 0){
/*
* seed the state with the first 64 bits of the fractional
* parts of the square roots of the first 8 primes 2..19).
*/
s->bstate[0] = 0x6a09e667f3bcc908LL;
s->bstate[1] = 0xbb67ae8584caa73bLL;
s->bstate[2] = 0x3c6ef372fe94f82bLL;
s->bstate[3] = 0xa54ff53a5f1d36f1LL;
s->bstate[4] = 0x510e527fade682d1LL;
s->bstate[5] = 0x9b05688c2b3e6c1fLL;
s->bstate[6] = 0x1f83d9abfb41bd6bLL;
s->bstate[7] = 0x5be0cd19137e2179LL;
s->seeded = 1;
}
return sha2_128(p, len, digest, s, SHA2_512dlen);
}
/* common 128 byte block padding and count code for SHA2_384 and SHA2_512 */
static DigestState*
sha2_128(uchar *p, ulong len, uchar *digest, SHA2_512state *s, int dlen)
{
int i;
u64int x[16];
uchar buf[256];
uchar *e;
/* fill out the partial 128 byte block from previous calls */
if(s->blen){
i = 128 - s->blen;
if(len < i)
i = len;
memmove(s->buf + s->blen, p, i);
len -= i;
s->blen += i;
p += i;
if(s->blen == 128){
_sha2block128(s->buf, s->blen, s->bstate);
s->len += s->blen;
s->blen = 0;
}
}
/* do 128 byte blocks */
i = len & ~(128-1);
if(i){
_sha2block128(p, i, s->bstate);
s->len += i;
len -= i;
p += i;
}
/* save the left overs if not last call */
if(digest == 0){
if(len){
memmove(s->buf, p, len);
s->blen += len;
}
return s;
}
/*
* this is the last time through, pad what's left with 0x80,
* 0's, and the input count to create a multiple of 128 bytes.
*/
if(s->blen){
p = s->buf;
len = s->blen;
} else {
memmove(buf, p, len);
p = buf;
}
s->len += len;
e = p + len;
if(len < 112)
i = 112 - len;
else
i = 240 - len;
memset(e, 0, i);
*e = 0x80;
len += i;
/* append the count */
x[0] = 0; /* assume 32b length, i.e. < 4GB */
x[1] = s->len<<3;
encode64(p+len, x, 16);
/* digest the last part */
_sha2block128(p, len+16, s->bstate);
s->len += len+16;
/* return result and free state */
encode64(digest, s->bstate, dlen);
if(s->malloced == 1)
free(s);
return nil;
}
/*
* Encodes input (ulong long) into output (uchar).
* Assumes len is a multiple of 8.
*/
static void
encode64(uchar *output, u64int *input, ulong len)
{
u64int x;
uchar *e;
for(e = output + len; output < e;) {
x = *input++;
*output++ = x >> 56;
*output++ = x >> 48;
*output++ = x >> 40;
*output++ = x >> 32;
*output++ = x >> 24;
*output++ = x >> 16;
*output++ = x >> 8;
*output++ = x;
}
}
DigestState*
hmac_sha2_384(uchar *p, ulong len, uchar *key, ulong klen, uchar *digest,
DigestState *s)
{
return hmac_x(p, len, key, klen, digest, s, sha2_384, SHA2_384dlen);
}
DigestState*
hmac_sha2_512(uchar *p, ulong len, uchar *key, ulong klen, uchar *digest,
DigestState *s)
{
return hmac_x(p, len, key, klen, digest, s, sha2_512, SHA2_512dlen);
}
|